
    

  

Egy. J. Pure & Appl. Sci. 2024; 62(2):1-11

 
  

A Reliable Numerical Treatment of Differential Equations via 

Hybrid Bernstein and Improved Block-Pulse Functions 

 
Mohamed A. Ramadan 1*, Heba S. Osheba 1 

 
                       1 Mathematics and Computer Science Department, Faculty of Science, Menoufia 

University, Egypt. 
    

 
A R T I C L E   I N F O                           A B S T R A C T  

1. Introduction   

      Since ordinary differential equations (ODEs) are used 

to simulate a wide range of physical, biological, and 

social events, solving ODEs is crucial in many branches 

of research and engineering. We can forecast how these 

occurrences will change over time and comprehend 

their behavior by solving ODEs.  

 

 

      The ability to analyses a system's underlying dynamics 

even with sparse or insufficient data is one of the main 

advantages of solving ODEs. Solving ODEs may show how 

various variables interact and change over time in a 

system by capturing the relationships between them. 

Direct extraction of this information from experimental 

data is frequently challenging or impossible.  
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 Many branches of practical mathematics rely heavily on numerical solutions to 

initial value problems, boundary value problems, and eigenvalue problems for 

ordinary and partial differential equations. Recently, the authors attempted to 

solve integral equations using hybrid Bernstein functions and improved block 

pulse functions. However, this is the first study to present a technical coupling 

between hybrid Bernstein and improved block-pulse functions for solving 

differential equations. The current method transforms differential equations 

into an algebraic system that can be solved with conventional methods. To 

validate the new method, certain numerical examples are supplied. The 

findings demonstrated that the method is both promising and highly accurate. 

The numerical findings reveal that the suggested hybrid approach outperforms 

the use of Bernstein polynomials, multi derivative hybrid block methods, 

block-pulse function, and other methods indicated in the numerical section in 

terms of accuracy. The proposed method can be implemented for more kinds 

of differential equations. The proposed method is applicable to a broader 

range of differential equations. The numerical results show that the proposed 

method are highly accurate and effective. 
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     ODE solutions can also be used to control systems or 

forecast the results of certain operations. ODEs are 

utilized, for instance, in engineering to develop control 

systems that manage the actions of machinery or 

processes. ODEs are used in medicine to simulate the 

transmission of diseases and assess the efficacy of 

various therapies. In conclusion, the significance of 

solving ODEs lies in their ability to shed light on 

complicated system behavior that cannot be discovered 

from data collection alone. It enables us to assess the 

results of various actions, optimize systems, and 

forecast how a system will change over time. Despite 

the fact that multiple orthogonal and non-orthogonal 

polynomials have been created and applied to linear 

and nonlinear differential equations such as Chebyshev, 

Legendre, Jacobi, Bernstein, Bernoulli, Genocchi, Lucas, 

Laguerre, Hermite, and Bell. 

      In recent years, several researchers have proposed 

direct approaches for solving higher-order ODEs. Majid 

et al. [1] utilised Jocobi iteration and direct methods with 

varying step sizes to solve second-order ODEs. Awoyemi 

and Idowu [2] devised a type of hybrid collocation direct 

approach for solving third-order ODEs. Olabode and 

Yusuph [3] used power series collocation and 

interpolation to develop a three-step block technique 

for solving third-order ODEs. Waeleh et al. [4] devised a 

block technique based on numerical integration and 

interpolation to solve higher-order ODEs, and they gave 

fourth- and fifth-order approximations. Olabode and 

Alabi [5] proposed a linear multistep technique for 

solving fourth-order ODEs that employs interpolation 

and the collocation of power series approximation 

solutions. 

     There have been several studies on using Bernstein 

polynomials to solve differential equations. Yousefi and 

Behroozifar [6] employed operational matrices and 

Bernstein polynomials to solve differential equations. 

Pandey and Kumar [7] used Bernstein operational 

matrices to tackle Emden-type problems. Alshbool et al. 
[8] proposed Bernstein polynomial-based approximations 

for singular differential equations. Chen et al. proposed a 

numerical solution to the variable order linear cable 

equation using Bernstein polynomials [9]. Bellucci [10] 

introduced the orthonormal Bernstein polynomials, 

which can be used in a generalised Fourier series to 

approximate surfaces and curves. 

 

 

    Alshbool et al. [12] solved fractional-order differential 

equations, whereas Asgari and Ezzati [11] used an 

operational matrix of two-dimensional Bernstein 

polynomials to solve fractional-order integral equations.  

The Hybrid Bernstein polynomials (BPs) and Improved 

Block-Pulse (IBPFs) functions are introduced in [13]. An 

efficient computational method for finding a solution of 

different kind equation such as linear and nonlinear 

Fredholm Integral Equations [24], Second Kind Fuzzy 

Fredholm Integral Equations [25], Volterra–Fredholm 

integral equations [26] and system of linear Fredholm 

integral equations [27]. In [28-30] investigates some 

numerical methods for solving the integrated forms of 

third- and fifth-order differential equations.  

     In this article, we first show the relationship between 

the Bernstein polynomials and the enhanced block pulse 

basis. Using this relation, we created the operational 

matrix for integration and product of B-polynomials.    

They are used for solving ordinary differential 

equations. The current method turns an ordinary 

differential equation to a series of algebraic equations. 

We used the proposed method on three test issues and 

compared the results to the precise solutions and other 

ways, demonstrating that it is very effective and 

convenient. Then we utilise them to solve differential 

equations 

    ∑            

 

   

                                   

 

With the initial condition 

                                                            

 

Where      and                are given functions 

and      is the unknown function to be determined. 

The key feature of this technique is that it lowers these 

equations to those of an easily solvable algebraic 

equation, significantly simplifying them. 

     The paper is structured as follows: Section 2 presents 

a combination of the Bernstein and Improved Block-

Pulse functions. Section 3 presents an approach for 

numerically approximating linear and nonlinear 

differential equations using the HBIBP basis. The 

accuracy and applicability are determined by solving 

several linear and nonlinear differential equations. 

Finally, the last part summarizes the findings. 
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2. Hybrid Bernstein improved block-pulse functions 

(HBIBPFs) [13]  

       Definition 2.1:             is a combination of 

Bernstein polynomials and Improved Block-Pulse 

functions where all are orthogonal and complete, and 

then the set is a complete orthogonal system. 

            where                           

            have two arguments   and   are the order 

of IBPFs and degree of BPs, respectively.          

defined on the interval [0, 1) as follows:  
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           .                                                                      (2.3) 

Thus, our new basis 

is                                    and we can 

approximate function to the base function, where   is an 

arbitrary positive integer and   
 

 
  . In the next section 

we really are dealing with the problem of approximating 

such functions. 

2.1. Function approximation 

     Using the HBIBP basis, a function u(x) can be 

represented as: 

       ∑ ∑                

 

   

   

   

                               

where 
                                                                      

and  

                                                                                        
we have  
                                                                   

then 

                                                                                
where 〈   〉 is the standard inner product and L is an 

                        matrix that is 

said the dual matrix that is 
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We can also approximate the function        

                as follow: 

                                    

where   is an            matrix that we can 

obtain as follows: 

     〈         〈               〉〉   . 

2.2. Operational product matrix 
      Suppose that       

     
          

   is an 

arbitrary              matrix which   
  is 

        matrix for                then  ̂  is 

                      operational matrix 

of product whenever  

                                    ̂                              

We know  

                  ̂                  , 

which  ̂  is operational matrix of product of Bernstein 

polynomials presented in [14, 15], then 
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 ̂  

[
 
 
 
  ̂  

  ̂ 

     

     
   

  

     
    ̂   ]

 
 
 
 

  , 

with    is             matrix. 

2.3. Operational Integration Matrix  

                                                 

                                                   

                is given by 

∫          

 

 

  ̅                                                         

where  ̅  is            square matrix and 

         is defined in Eq. (2.1)-(2.3). It is easy to see 

that:  

   ∫         

 

 

 
 

   
                 

Then 
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On the other hand we know  

∫      

 

 

                                                        

which   is the operational matrix of integration of 

Bernstein function (     ) and Information on 

obtaining this matrix are given in [14]and [15]. 
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where  ̅ is a matrix              that all of its 

elements is one and  ̅  is the zero matrix of size 

           . 

Therefore, the operational matrix of integration   is 

obtained as follows: 

Assume     
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2.4. Operational differentiation matrix  

    The operational matrix of differentiation  ̅ is given 

by 

            

  
  ̅         

We have  

     

  
      . 

Which   is the operational matrix of differentiation of 

     and information on obtaining this matrix is given 

in [14, 15]. 
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where  ̅ is a matrix              that all of its 

elements is zero. 

So  

 ̅   
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 ̅         ̅
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. 

 

3. Solution Methodology and Illustrative examples 

3.1. Solution Methodology  

    This section presents the derivation of the method for 

solving the linear differential equation (1.1) with the 

initial conditions Eq. (1.2). If we approximate 

                      and         as follows: 

                                                           

                
                         

                                                         

Where              and C are the coefficients 

which are defined similarly to Eq. (2.8). With  -times 

integrating  

from Eq. (3.2) with respect to   between     to   

 , using Eq.(2.14) and the initial conditions Eq. (1.2), we 

will have 
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Where 

                                                                                         

Substituting Eq. (3.4) into Eq. (3.3), we have 
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Replacing Eq. (3.6) and Eq. (3.7) into (1.1), we obtain 

∑  
 

 

   

                                         

Using Eq. (2.13), we have 

∑          ̂   

 

   

                                              

Therefore, we get 

∑ ̂   

 

   

                                                                                    

The unknown Vector   can be obtained by solving Eq. 

(3.10). once   is known,     can be calculated from Eq. 

(3.7). 

3.2. Illustrative examples 

     Example 1: Application to the Bessel differential 

equation [14]. 

Consider the following zero-order Bessel differential 

equation (O'Neil 1987). 

             

with initial conditions                . 

The exact solution known as the Bessel function of the 

first kind of order zero denoted by       

      ∑
     

     
(
 

 
)
  

 

   

 

First, we approximate the unknown function        by 

         ∑ ∑                

 

   

   

   

                                     

Using Eq. (2.14) and initial conditions we have 
          ̅           

        ̅                                     
Where              and we can express 

function   as 

                                                                                    

       

     Substituting Eq. (3.11) – (3.13) in the Bessel 

differential equation we obtain 

                             ̅          

                 ̅          

                                             
                             ̅         

                ̅          

                      

                                                                  

Using Eq. (2.13) we have    

                              ̂                       

Replacing Eq. (3.16) in Eq. (3.15) we get 

          ̂       ̅                      ̂   ̅  
 

           ̂                             

Or  

          ̂              ̅    

            ̂   ̅  
 

           ̂                           

Then 

  ̂     ̅       ̂   ̅  
   ̂                                     

thus we have 

   ( ̂    ̅     ̂   ̅  
)
  

 ̂      

Here, we solve the same problem using Hybrid 

Bernstein improved block-pulse functions (HBIBPFs), 

with        . In Table 1, a comparison is made 

between the approximate values using the present 

approach together with the exact solution of       

and Bernstein-polynomials approach [14]. It is noted 

that the maximum error for this problem, obtained in 
[16] is      and in [14] is                  . 

     Example 2: Consider the nonlinear boundary layer 

equation [17,  18,  19] 

                                                                       

with initial conditions                         .  

This equation is well-known as the Blasius equation. 

Solving the Blasius equation yields the value y'''(0), 

which is used to evaluate shear stress at the plate. 

Blasius' equation has been solved using several 

approaches, such as series expansions, Runge Kutta, 

differential transformation, and others..  

First, we approximate the unknown function         by 

          ∑ ∑                

 

   

   

   

                         

Using Eq. (2.14) and initial conditions we have 

           ̅           

    ̅                    
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     Where we approximate              and  

          ̅              ̅         

                                         

        ̅              ̅         

                                          

Where     ̅      ,    ̅  
   ̅    and    

 ̅  
   ̅  

  , then  

Substituting Eq. (3.21) – (3.24) in the Blasius equation 

we obtain 

                                                                         

                                     

                                    

Using Eq. (2.13) we have 

                                          ̂         

Then we get 

                                      ̂   , 

                                      ̂   , 

thus we have 

                                       
  

 
 ̂ . 

Our methodology's findings are widely acknowledged 

(see Table 2) when compared to the hybrid block 

approach [17], the Bernstein polynomials method [18], 

and the Bernoulli polynomials operational matrix [19] for 

the constant A = 1. 

     Example 3: Next consider the following problem [20, 21 

and 22] 

                                                       

with initial conditions                          . 

The exact solution is            

First, we approximate the unknown function         by 

          ∑ ∑                

 

   

   

   

                          

Using Eq. (2.14) and initial conditions we have 

           ̅           

    ̅                                 

Where we approximate              and  

             ̅              ̅                       

          ̅              ̅                        

      ̅              ̅         

                                                

Substituting Eq. (3.26) – (3.29) in Eq. (3.25) we obtain 

                             

             (   ̅                    )

  (   ̅          

    ̅         )

  (   ̅          

    ̅                    )
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(    ̅    ̅  
   ̅  

)          ̅      ̅  

  (    ̅    ̅  
   ̅  

)
  

         ̅

     ̅   

Here, we solve the same problem using Hybrid 

Bernstein improved block-pulse functions (HBIBPFs), 

with        . In Table 4, a comparison is made 

between Absolute Errors of the approximate values 

using the present approach Linear Multistep Hybrid 

Method [20], Bernstein polynomials [21] and Hybrid Block 

method [22]. 

Example 4:  Consider the following problem [22, 23] 

                                                      

with initial conditions                          . 

The exact solution is             . 

First, we approximate the unknown function         by 

           ∑ ∑                

 

   

   

   

                                          

Using Eq. (2.14) and initial conditions we have 

           ̅           

    ̅         

                                          

Where we approximate              and  

           ̅              ̅                         

         ̅              ̅                             

          ̅              ̅         

                                            

Substituting Eq. (3.31) – (3.34) in Eq. (3.30) we obtain 

                          

           (   ̅                    )

 (   ̅          

    ̅         )

 (   ̅          

    ̅                    )

    

      ̅   ̅   ̅      ̅     ̅  

(   ̅   ̅  
  ̅  

)     ̅     ̅  

  (   ̅   ̅  
  ̅  

)
  

    ̅     ̅   

Here, we solve this problem using Hybrid Bernstein 

improved block-pulse functions (HBIBPFs), with    

     . In Table 4, a comparison is made between 

Absolute Errors of the approximate values using the 

present approach, multi derivative hybrid block 

methods [23] and Hybrid Block method [22]. 
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Table 1. Comparison of the absolute error for numerical results for Example 1 of the given approach with    

         , Bernstein polynomials method 
[14]

, and the exact solution of      . 

 

   

Exact solution 

 

 

Bernstein-polynomials 
[14]

 for      

 

Presented Method 

 

Absolute Error 

Bernstein- polynomials 
[14]

 

 

Presented Method 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.00000000000000     

 0.99750156206604      

0.99002497223958     

 0.97762624653830      

0.96039822665956     

 0.93846980724081      

0.91200486349721     

 0.88120088860741      

0.84628735275048     

 0.80752379812255      

0.76519768655797 

1.0000000000000038  

0.9975015620660412  

0.9900249722395755  

0.9776262465382969  

0.960398226659563  

0.9384698072408127  

0.9120048634972114  

0.8812008886074042  

0.8462873527504811  

0.8075237981225438  

0.7651976865579627 

1.00000000000000     

0.99750156206604      

0.99002497223958     

0.97762624653830      

0.96039822665956     

0.93846980724081      

0.91200486349721     

0.88120088860741      

0.84628735275048     

0.80752379812255      

0.76519768655797 

  3.774758284e-15   

1.221245327e-15   

4.440892099e-15   

3.108624469e-15   

2.997602166e-15   

2.775557562e-15   

1.443289932e-15   

5.773159728e-15   

1.110223025e-15   

6.217248938e-15   

7.327471963e-15 

9.7144514655e-17   

9.1593399532e-17   

8.6042284408e-17   

8.0491169285e-17   

7.4940054162e-17   

6.9388939039e-17   

6.3837823916e-17   

5.8286708793e-17   

5.2735593670e-17   

4.7184478547e-17 

3.9677949039e-17 

 

 

 

 

 
 
 
 
 
 
 
 

 
Fig. 1 Graphical solutions of Example 1 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 Comparison of the absolute error for numerical results for Example1 for the presented method with Bernstein-

polynomials presented in 
[14]

. 
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Table 2. Comparison of the approximate solution for Example 2 of the given approach with  

           , Hybrid block method 
[17]

, Bernstein polynomials method 
[18]

, and Bernoulli polynomials 
[19]

. 

                                                                                                                                                                         

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Comparison of the absolute error for numerical results for Example 3 for the presented method with     

   .with other three numerical methods presented in 
[20, 21, 22]

 

 

 

 

  

 

 

Exact solution 

 

Absolute Error 

Linear Multistep 

Hybrid Method 
[20] 

Bernstein 
polynomials 

[21] 

Hybrid  Block 

method 
[22]

 

 

Presented method 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.000000000    

0.995321160     

0.982476904     

0.963063687     

0.938448064     

0.909795990    

0.878098618     

0.844195016    

0.808792135     

0.772482354 

            

           

             

             

            

            

           

          

           

          

           

            

           

            

           

           

           

           

           

           

6.4300E-08 

2.7200E-08 

3.0500E-08 

8.9800E-08 

4.4260E-07 

7.7260E-07 

1.9523E-06 

1.0274E-06  

 1.3509E-06  

1.3470E-05 

                   

                      

                   

                   

                   

                     

                   

5                  

                     

                    

  
 

 

 

 

  

  

Hybrid block 

method 
[17]

 

 

Bernstein 

polynomials 
[18]

 

 

Bernoulli 

polynomials 
[19]

 

 

Presented Method 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.004999979  

 0.019998667  

 0.044998481  

 0.079991467  

 0.124967454  

 0.179902837  

 0.244755068  

 0.319454501  

 0.403894871  

 0.497922483 

0.004999958  

0.019998667  

0.044989879  

0.079957378  

0.124870058  

0.179677141  

0.244303617  

0.318646009  

0.402568621  

0.495900383 

0.005 

0.02 

0.045 

0.08 

0.125 

0.18 

0.245 

0.32 

0.405 

 0.5 

0.0049999583341723  

0.0199986668419935  

0.0449898794745896  

0.0799573779857994  

0.1248700575229549 

0.179677141245484  

0.244303616982151  

0.318646009310246  

0.402568620552525  

0.495900382783151 
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Fig. 3 Comparison of the absolute error for numerical results for Example 3 for the presented method with other three 

numerical methods presented in 
[20, 21, 22]

. 

 

Table 4. Comparison of the absolute error for numerical results for Example 4 for the presented method with     

   . With other three numerical methods presented in 
[22, 23]

. 

 

 

 

 

 

 

 

 

 

  Exact solution 

 

Absolute Error Relative error 

Multi 

derivative 

Hybrid block 

methods 
[23]

 

Hybrid Block 

method 
[22]

 

Presented 

method 

Multi 

derivative 

Hybrid block 

methods 
[23]

 

Hybrid Block 

method 
[22]

 

Presented 

method 

0.01 0.999950000     1.601682E-05  6.72000E-07  2.305072e-13       1.6018e-05 6.7203e-07 2.3052e-13 

0.02 0.999800007     1.100991E-04  1.34410E-06  2.279087e-13       1.1012e-04 1.3444e-06 2.2795e-13 

0.03 0.999550034      5.567153E-04  2.01700E-06  1.351249e-13       5.5697e-04 2.0179e-06 1.3519e-13 

0.04 0.999200107     1.633243E-03  2.68840E-06  5.823823e-14       1.63324e-03 2.6906e-06 5.8285e-14 

0.05 0.998750260 3.620183E-03 3.35940E-06 4.585688e-13       3.62018e-03 3.3636e-06 4.5914e-13 

 

 

  

 
 

 

 

Exact solution 

 

Absolute Error 

Multi derivative 
Hybrid block 
methods 

[23]
 

Hybrid  Block 
method 

[22]
 

 
Presented 

method 

0.01 

0.02 

0.03 

0.04 

0.05 

0.999950000    

0.999800007     

0.999550034     

0.999200107     

 0.998750260 

1.60168E-05  

1.100991E-04  

5.567153E-04  

1.6332403E-03  

3.62018361E-03 
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Fig. 4 Comparison of the absolute error for numerical results for Example 4 for the presented method with       

 . With other three numerical methods presented in 
[22, 23]

. 

 

4. Conclusion 

       To address several second and third order initial 

value issues of ODEs, the hybrid Bernstein and enhanced 

block-pulse functions method introduced by Ramadan 

and Osheba [9] is employed and developed. The current 

method transforms differential equations into an 

algebraic system that can be solved using standard 

methods. The numerical results show that the derived 

method outperforms some of the other methods 

addressed in this paper. Based on the numerical results, 

the method appears to be very promising for managing 

more general equations that the authors are 

investigating, such as nonlinear differential equations 

and oscillator differential equations, which play critical 

roles in natural and physical simulations. 
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