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A R T I C L E   I N F O                           A B S T R A C T  

1. Introduction   

      Quadratic linear optimal control problems represent 

an important class of problems investigated in optimal 

control, [1-3]. They have applications in various fields as well 

as these problems are often taken as test examples that 

demonstrate the maximum Pontryagin’s principle in 

calculus of variations. Many processes in science, biology, 

engineering, and economics can be modeled by a linear 

integral time invariant system, see [4-10]. Therefore, it is 

important to study the optimal control of these systems 

separately in its integral form, without converting them to 

the differential form, inorder to preserve its properties.  

       

     More precisely, this paper deals with a quadratic 

optimal control problem involving a dynamical system 

described by a linear integral equations. Such problems 

were previously considered in a general form, as the 

optimal control for Volterra integral equation e.g., [11-

13].Optimal control problems with integral state 

constraint naturally arise in many engineering 

applications e.g ., [1-8], [12], [13]. We specifically mention [1], 

[2], [4] because the cost functional in them is quadratic. In 
[1], [4], existence theorems of the quadratic optimal 

control problem for an integro-differential Volterra 

equation has been proved.  

 

Received 4 December 2023 
Accepted 24 December 2023 

 Quadratic optimal control problems have applications in various fields of 

science and engineering at the same time, they are relatively easy to solve, In 

addition, these problems are often taken as test examples that demonstrate 

the effectiveness of basic methods of optimal control theory. Many 

applications contain integrals, such as electrical circuits that contain 

capacitors, and it is not feasible in applications to convert integrals into 

differentials, especially if there are many integrals of many variables in the 

problem. In this paper, we first consider the general finite time horizon 

control problem for nonlinear linear integral systems, and then proceed to 

discuss the case for linear quadratic problem as well as we will construct an 

algorithm to find the exact solution of the quadratic optimal control problem 

for a system described by linear integral equations. As applications, this 

algorithm will be used to compute the optimal solution for single and coupled 

RC electrical circuits. 
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       In [2], Under some necessary convexity conditions, 

an optimal control exists for linear quadratic optimal 

control problems, and can be characterized via Fréchet 

derivative of the quadratic functional in a Hilbert space 

or via maximum principle type necessary conditions.  In 

this paper, we construct an algorithm, gives the exact 

solution for the integralquadratic optimal control 

problem. We first consider the general finite time 

horizon control problem for nonlinear linear systems, 

and then proceed to discuss the case for linear 

quadratic problem. 

 

2. Necessary conditions for nonlinear control 
problem 
     In this section, we formulate the control problem for 

nonlinear integral system. Consider the system 

described by the following nonlinear integral system: 
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0

tutxtfdx
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 where )(tx  an n -vector function is determined by 

)(tu  an m -vector function, with ., mn ux   

Consider a performance index of the form  
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),,( uxtf  and ),,( uxtL  are continuous for all 
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f uxttt 
 and have continuous 

derivative up to the second order. 

The necessary conditions of the constrained optimal 

control problem (1)-(2) are obtained by converting into 

an unconstrained optimal control problem using the 

Lagrange multiplier function :)( nt    
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 By changing the order of integration, we get  
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 Setting the terms that multiply variations to be zero 

yield:  
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 Thus, we obtained the following theorem:  

Theorem .1  If )(tu  is a solution of the problem (1)-(2), 

then the following equations are satisfied:   
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3.  Second variations 

       Now consider the second variation J2  due to 

variations in the control vector ).(tu   

 

dtdxu
u

H
u

u

H
uu

xu

H
x

dtx
x

H
x

ux

H
ux

x

H
xJ

t

t

TTTTf
t

t

TTTf
t

t







































































)(

=

0

2

2

22

0

22

2

2

0

2

 
 

dtdxu
u

H
x

x

H

dtu
u

H
uu

ux

H
xx

xu

H
ux

x

H
xJ

t

t

TTTf
t

t

TTTTf
t

t







































































)(

=

0

22

0

2

222

2

2

0

2

 

 By using 
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In order that J  be a local minimum, not only must we 

have 0=J  but, in addition, the second-order 

expression for J  holding 0),( 2 J  must be 

nonnegative for all values (infinitesimal) of ;u  that is, 

we have 
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4. Linear quadratic problem 

       Consider the problem  

  min)()()()(
2

1
=(.))(

0

 dttuTtutxStxuJ TTf
t

t

                                                                                  (7) 

  

         under the integral constraint  
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 where   

    )(tg  is non zero n  vector differentiable function 

in 
,),( 0 ftt
  

    M  is nn  invertible matrix,  

    N  is mn  matrix,  

    S  is symmetric positive semi-definite nn  matrix,  

    T  is a symmetric positive definite mm  matrix.  

The control goal generally is to keep      close to    

especially, at the final time     using little control effort 

    

 

    
 

 
           penalizes the transient state deviation, 

    
 

 
           penalizes control effort.  

     

       Applying the necessary and sufficient conditions of 

the general optimal control given in the above sections 

to the linear quadratic problem(7)-(8), then the optimal 

control is given by:  
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 where )(t  and )(tx  satisfy the following equations:  
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 with the final condition  
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which can by solved by differentiation, to obtain the 

following main theorem:  

 

 

 

 

 

 

 

 

 

 

 

Theorem 2 (Solution of linear integral quadratic 

problem) The optimal control of quadratic problem (7)-

(8) is given by:  
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Theorem 2 can be transform to the following algorithm  

 

Table  1. Exact solution algorithm for integral quadratic control problem 
 

 
 
 
 
 
 
 
 
  

Step 1   Input TSNMtt f ,,,,,0  and g  

Step 2   Evaluate A   

Step 3   Calculate ),( 0tt   

Step 4   Substitute in (15) to find )(tx  and )(t  with unknown )( 0t   

Step 5  Substitute by      into )(tx  and )(t  that we obtained in step 4 and then solving the algebraic 

equation )()(=)( 1

f

T

f txSMt   to find )( 0t  

Step 6   Substitute again by the value of )( 0t that obtained in step 5 in (15)  to find the exact solution of )(tx  

and )(t  

Step 7   Plot )(tx  and )(=)( 1 tNTtu T in the interval [     ] 

Step 8  Substitute by the exact solution of )(tx  and )(tu  that obtained in step 7 to calculate Jmin  from (7)  
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6. Application in circuits  
RC-circuit 

Fig. 1.  RC circuit 
 

      In this application, we want to find the unknown 

supplied voltage )(tu  for the RC circuit in Fig. 1, which 

minimized the cost functional given by  
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 where C  is a capacitance value. By applying the 

Kirchhoff’s voltage law, we get  
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    Step 7.  The optimal current and corresponding are 

depicted in Fig. 2. 

 

 
 

   Fig. 2. optimal current )(ti  and  corresponding 

voltage )(tu  of RC circuit 
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    Step 8.  100.47747497=minJ      

        Although we calculate the optimal current )(tx  

and voltage )(tu  and its corresponding minimum cost 

functional 100.47747497=minJ  by mathematical 

approach, we shall illustrate its efficiency by comparing 

with some other input voltage functions. Table 2 depicts 

the efficiency of series RC circuit in Fig. 1 with 

tvCR g 5=1,=2,=
 and various input voltage 

function .)(tu  In this case the current is given by the 

formula 
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Table 2. Known input voltages signals 
.)(tu

 and its 

corresponding for RC circuit.   

 

Input voltage .)(tu  Corresponding J  

Unit step 1.)( tu   37.10634097 

Ramp ttu .)(  1.21504423 

Sinusoidal ttu sin.)(   1.149388549 

 

RC-coupled circuit 

Fig 3. Coupled RC circuit 

 

     In this application, we want to find the unknown 

supplied voltage )(tu  for the coupled RC circuit in Fig.  

3, which minimized the cost functional given by  
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      By applying the Kirchhoff’s voltage law for the right 

and left-hand loops, we get  
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       By applying the steps of the algorithm, we obtain 

the optimal current in fig. 4, corresponding optimal 

voltage in fig. 5 and 0765439662.0=min J  
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  Fig. 4. Optimal currents 
)(2 ti

 and 
)(3 ti

  of coupled RC 
circuit 

 

 

       Fig. 5. optimal  voltage )(tu  of coupled RC circuit 

 

       We calculate the optimal current )(tx  and voltage 

)(tu  and its corresponding minimum cost functional 

10765439662.0=min J   by mathematical approach, 

we shall illustrate its efficiency by comparing with some 

other input voltage functions.  

 
 
 

 
 

Table 3. Known input voltages signals 
.)(tu

 and its 

corresponding
J

 for coupled RC circuts.   
 
 

Input voltage 
.)(tu
 Corresponding 

J
 

Unit step 
1.)( tu

 
19.44940722 

Ramp 
ttu .)(

 
28.51786709 

Sinusoidal 
ttu sin.)( 

 
25.37690787 

 
     To perform calculations in the above applications 

easily and accurately, you can convert the algorithm 

into a general procedure using any mathematics 

program such as Matlab, Maple, or Mathematica. In the 

appendix, I constructed a Maple procedure call it 

QISolu. 

    
7.  Conclusion 
      In the paper, an algorithm has been constucted for 

computing the exact solutions for the quadratic optimal 

control problem with integral constraints. As 

applications, this algorithm has been used to find the 

optimal solution for single and coupled RC electrical 

circuits. In the future, we will develop this algorithm to 

include more difficult cases, such as those that contain 

both integral and differential constraints, so that we can 

apply it to electronic circuits of the type RLC. 
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Appendix 

       Maple is a mathematical program that can solve 

complex mathematical problems by writing just a few 

lines of command. You can create your own procedures. 

The maple program contains important packages such 

as linear algebra package. In [14], we constructed a 

Maple procedure to get the exact solution of 

nonhomogeneous time-invariant continuous systems. 

Here, we will develop a Maple procedure for computing 

exact solution of the aforementioned   quadratic control 

problem. Throughout, we will use some commands like: 

> proc(.)...end proc:                                          # Procedure. 

> with(LinearAlgebra):               # Linear algebra package. 

> seq(             ;                                       # Sequence 

                 

>           [ [ ] [ ]] ;                       # Defining vector 

[
 
 
] 

>            [ [     ] [     ]] ;         # Defining 2 by 

3  matrices. 

> Transpose(A);                                      # Matrix transpose. 

>MatrixInverse(A);                                   # Matrix inverse. 

> Plot(             );                          # Plot function f in        

the interval [[     ]  

 

QISolu 

       Procedure QISolu computes and plots the optimal 

state and corresponding optimal control for linear 

integral quadratic control problem. 

. 

Output: 

Computing and ploting solutions  

Syntax: 

 
Input: 

t0- a real number represents  initial time; 

tf- a real number represents  final time; 

M - an n- invertable square matrix represents system 

state   coefficients; 

N - an n x m  matrix represents system control   

coefficients; 

S - a symmetric positive semi-definite n- square matrix 

represents quadratic cost state;   

T - a symmetric positive definite m square matrix 

represents quadratic cost control;   

g - a vector of a given continous real functions on (t0,tf).  

 

 

 

 

Definition: 

% --------------Step 1.input               and  -----------

----- 

> 

QISolu:=proc(t0,tf,M::'Matrix'(square),N::Matrix,S::'Mat

rix'(square),T::'Matrix'(square),g::Vector) 

>local 

M1,M2,N1,T1,G,C00,C0,C,C1,g1,h,z1,z2,eqs,csolu,z,zf,z1

f,z1ff,z2f,z2ff,a,m,n,A,J1,P,P1,eJ,eJ1,yh,yp1,yp2,yp,i,Jm1,

Jm2,Jm,xx,xT,v,vT; 

% -------------------Step 2. Evaluate       --------------------- 

> n:=LinearAlgebra[RowDimension](M); 

> m:=LinearAlgebra[RowDimension](T); 

> M1:=LinearAlgebra[Transpose](M); 

> N1:=LinearAlgebra[Transpose](N); 

> M2:=LinearAlgebra[MatrixInverse](M); 

> T1:=LinearAlgebra[MatrixInverse](T);G:=N.T1.N1; 

> A:=LinearAlgebra[MatrixInverse](Matrix([[M,-G],[-S,-

M1]])); 

% --------------------------Step 3 ---------------------------- 

> J1, P := LinearAlgebra[JordanForm](A, output = ['J','Q']); 

> P1:=LinearAlgebra[MatrixInverse](P); 

> eJ:=LinearAlgebra[MatrixExponential](J1,t-t0); 

% --------------------------Step 4 ---------------------------- 

> eJ1:=subs(t = -t, eJ); 

> C00:=seq(C[i],i=1..n);C0:=Vector([C00]); 

> C1:=Vector([M2.G.C0-M2.subs(t=t0,g),C0]); 

> yh := P.eJ.P1.C1;g1:=map(diff,g,t); 

> yh:=simplify(yh);h:=Vector([map(diff, g, t),seq(0,i=1..n)]); 

> yp1 := eJ1.P1.A.h;yp2:=subs(t = x,yp1); 

> yp:=P.eJ.map(int,yp2,x=t0..t);yp:=simplify(yp); 

> z:=yh+yp; z:=convert(z,list); z:=simplify(z); 

% ----------------------------Step 5 --------------------------- 

> z1:=Vector([seq(z[i],i=1..n)]); 

> z2:=Vector([seq(z[i],i=n+1..2*n)]); 

> eqs:=S.subs(t = tf,z1)+M1.subs(t = tf,z2); 

> eqs:=seq(eqs[i]=0,i=1..n);  

> csolu:=solve({eqs},[C00]);csolu:=simplify(csolu); 

> z1f:=convert(z1,list); 

> z2f:=-T1.N1.z2;z2f:=convert(z2f,list); 

% -----------------------------Step 6 --------------------------- 

> for i from 1 to n do a[i]:= eval(C[i], csolu[1]); 

> end do; 

> z1ff:=subs(seq(C[i]=a[i],i=1..n),z1f); 

> z2ff:=subs(seq(C[i]=a[i],i=1..n),z2f); 
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% -----------------------------Step 7 -------------------------- 

> for i from 1 to n do 

> print(x[i](t)); 

> print(plot(z1ff[i],t=t0..tf,color=red,thickness=2)); 

> end do; 

> for i from 1 to m do 

> print(u[i](t)); 

> print(plot(z2ff[i],t=t0..tf,color=red,thickness=2)); 

> end do; 

% -----------------------------Step 8 -------------------------- 

> xx:=Vector([z1ff]);v:=Vector([z2ff]); 

> xT:=LinearAlgebra[Transpose](xx); 

> vT:=LinearAlgebra[Transpose](v); 

> Jm1:=(1)/(2)*map(int,xT.S.xx,t=t0..tf); 

> Jm2:=(1)/(2)*map(int,vT.T.v,t=t0..tf); 

> Jm:=evalf(Jm1+Jm2); 

> print(J=Jm); 

> end proc: 

 

 RC -circuit (Fig. 1) 
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RC-coupled -circuit (Fig. 3) 
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