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A R T I C L E   I N F O                           A B S T R A C T  

1. Introduction   

      Polynomial series and orthogonal functions play an 

essential rule for solving various problems of dynamic 

systems [1-8]. One of those problems is solving 

differential or integral equations.  

 

 

        The major idea of employing orthogonal basis is that it 

decreases these problems in order to solve a system of 

linear algebraic equations, approximating some signals 

involved in these equations, by the use of both of the 

truncated orthogonal sequence and the matrix of 

integrations P  to exclude the integral operations.       
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 In this work, the authors offer a novel and accurate method in order to find 

the solution of the linear differential equations over the intervals [0, 1) 

based on the generalization of Legendre wavelets. The mechanism is still 

upon workable implementation of the operational matrix of integration and 

its derivatives. This method reduces the problems into algebraic equations 

via the properties of generalized Legendre wavelet (GLW) together with the 

operational matrix of integration. As a result of this inquiry, the proposed 

numerical technique based on the GLW has been tested on three linear 

problems. The proposed numerical technique, based on the GLW, has been 

examined on three linear problems as a consequence of this investigation. 

The numerical findings reveal that, in comparison to other existing 

numerical and analytical methods, this method is quite useful and 

advantageous for dealing with such situations. The proposed approach is 

applicable to increasingly complex differential equations. 
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      Consider the equation ,)x(Pdx)x(
t

0

 
with the 

obtained operational matrix  by using the orthogonal 

functions’ basis 1n10 ,,,  
and 

 1n10   ,,, 
, see for example, Abd-

Elhameed and Youssri [9] introduced two new spectral 

wavelets algorithms for solving linear and nonlinear 

fractional-order Riccati differential equation. Their 

suggested algorithms are basically based on employing 

the ultraspherical wavelets together with the tau and 

collocation spectral methods. W. M. Abd-Elhameed et 

al. [10] concerned with introducing two wavelets 

collocation algorithms for solving linear and nonlinear 

multipoint boundary value problems by employing 

third- and fourth kind Chebyshev wavelets along with 

the spectral collocation method to transform the 

differential equation with its boundary conditions to a 

system of linear or nonlinear algebraic equations in the 

unknown expansion coefficients which can be efficiently 

solved. 

       Moreover, W. M. Abd-Elhameed et al. [11] 

introduced a new spectral algorithm based on shifted 

second kind Chebyshev wavelets operational matrices 

of derivatives for solving linear and nonlinear second-

order two-point boundary value problems. Lately, 

Wavelets are very important in various studies such as 

science and engineering. Various authors have studied 

different forms of wavelets such as Fourier series, Walsh 

functions, Legendre polynomials, Bessel series and 

Chebyshev polynomials (see [12-19]). The Wavelet analysis 

is a probable mechanism to solve such difficulty in 

Physics, signal and image processing by deletion of 

numerous terms in gaining demand precision.  

      Gu and Jiang [20] developed the Haar Wavelet 

operational matrix. Chen and Hsiao [21] solved some 

problems in image processing, communication and 

physics using the wavelet analysis. Shyam and Susheel 
[22] estimated a new theorem on preferable wavelet 

approximation of the functions from the generalized 

lipschitz class by the use of Haar scaling function. By the 

use of Haar wavelets, Lepik [23] proposed the 

segmentation method to solve differential equations, 

numerically. Lepik [24] demonstrated that the Haar 

wavelet method is a strong tool for finding the solution 

of various forms of integral and partial differential 

equations, his method’s major feature is its simplicity 

and small calculation charge.  

      Jhangeer et al. [25] studied the Bogoyavlenskii–

Kadomtsev–Petviashvili (BKP) equation by means of Lie 

symmetry analysis. TavassoliKajani et al. [26] studied the 

Chebyshev wavelets matrix of integration, Sripathy et al. 
[27] presented the chebyshev wavelet method in order to 

solve some non-linear differential equations arising in 

engineering. Shyamand Rakesh [28] obtained five new 

estimates of any function f on ),[ 10  having bounded 

derivative by the method of the extended Legendre 

wavelet. Owais et al. [29] developed the comprehensive 

theory of biorthogonal wavelets on the spectrum. 

Sharma and Lal [30] presented the operational matrix of 

integration by the use of the Legendre wavelet in order 

to solve different types of differential equations in both 

linear and non-linear forms.  

      This manuscript is orderly as follows: in the second 

section, we present the definition of Legendre wavelet 

beside its properties. Also, we present the definition of 

the extended Legendre wavelet expansion together 

with the function approximation. In section 3, we offer a 

novel and accurate method for solving linear differential 

equations over the intervals [0, 1) based on the 

generalization of Legendre wavelets. The mechanism is 

still upon workable implementation of the operational 

matrix of integration and its derivatives. This method 

reduces the problems into algebraic equations. Our 

proposed numerical technique will be examined on 

three linear problems in the fourth section. We 

summarize our work in the fifth section. 

2. Definitions and Preliminaries 

2.1. Legendre wavelet and its properties 

Considering a single function “mother wavelet”

)t( , from which wavelets represent a family of 

functions by dilating and transforming this single 

function. This family of continuous wavelets [20] has the 

following form: 
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for which k is positive integer, 
1k221n  ,,,  and 

1n2n ˆ , the order of the Legendre Polynomial is 

denoted by M210m ,,,,   and the normalized time 

is denoted by t .The Legendre Polynomials mL  which are 

obtained in the above definition is proposed as follows: 

)3.2(,3,2,1,)(
1

)(
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12
)(

)(
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11

1 ,

,1)(
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m
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m

m
tL

tL

mmm

t

tL  

which are orthogonal over [-1,1] with weighting 

function 11w )( ,for more details (see Balaji [31]). 

2.2. Function approaches 

A function )( tf  which is defined on ),[ 10 can be 

extended as Legendre Wavelet infinite series of the 

following type 

)4.2()(
1 0

,,









n m

mnmnctf   

where mnmn fc ,, ,
. 

After being trimmed, Eq. (2.4) can be rewritten as 

follows.  
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  T

MM kkk ccccccC
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and  
T
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. 

2.3. Generalized Legendre Wavelet Expansion [28] 

In this section we introduce a generalization for 

Legendre wavelets given in (2.2) .The proposed 

Generalized Legendre wavelets )(GLW  on the interval

),[ 10  are defined by  
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for which k  is positive integer, 
1k21n  ,,,  and 1n2n ˆ and the order of 

the Legendre Polynomial is denoted by

M210m ,,,,   and the normalized time is 

denoted by t . 

 

Lemma 2.3.1. (Orthonormality of the generalized 

Legendre wavelets) 

The generalized Legendre wavelets which are 

defined in Eq. (2.6) are orthonormal on ]
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From the definition of GLW given in Eq.(2.6), we 

have  
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Since the Legendre polynomials are orthogonal on

],[ 11 , then we conclude that. 

.)(),( ,,
)()( 0tt mnmn 
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                        (2.7)                                                                                                                  

To show the generalized Legendre wavelets are 

orthonormal on

]
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, we only need to show 

they are normalized, that is 
1t
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Therefore we have

1
1m2

2

2

1m2
dvvL

2

1m2
t

1

1

2
m

2

2
mn 

















 








 




)()(,
)( 

                                                                                       (2.8) 

From (2.7) and (2.8) it is clear that our generalized 

Legendre wavelets that are defined in Eq. (2.6) are 

orthonormal. A function )( tf  which is defined on 

),[ 10 can be expanded as generalized Legendre 

wavelet infinite series of the following type  
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                                                                                      (2.9) 

where 
mnmn fc ,, , 

. 

After being trimmed, Eq. (2.9) can be expressed as 

follows:
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3. Operational matrix of integration and 

convergence criteria of the proposed method 

3.1. Generalized Legendre Wavelet Operational Matrix 

of Integration 

Now, we will present our new generalized Legendre 

wavelet operational matrix of integration for

32K3M  ,, , then it used to solve the 

differential equations. The variation between exact 

solution and Legendre wavelet solution is negligible. 

With the use of the definition of Legendre wavelet 

for 3210m ,,, and .,, 321n   

We get that 
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Now by integrating Eq. (3.1), we have 
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Now expanding Eq. (3.13) in the type of basis 

function, yields that 
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Thus we propose the operational matrix of 

integration as follows: 
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 Thus, 

  )14.3(.)()( 12

0

12 tPdxx

t

  

3.2. Convergence criteria of the proposed (GLWM) 

In this subsection, we discuss the theoretical 

analysis of the convergence of our approach to solve the 

general linear differential equation of order n defined 

below:

)15.3(.)(,,)(,)(

,)()()()(

10

)1(

1000

01

)1(

1

)(













n

n

n

nn

ytyytyyty

thytPytPytPy





Theorem 3.2.1. 

The series solution  

)()( ,, tcty
1n 0m

mnmn 









defined in Eq.(2.9) 

using generalized Legendre wavelet method converges 

to ).( ty  

Proof: 

Let )( RL2

 be the Hilbert space. 

Since we have shown that  

)ˆ()(,
)( ntLmt k

m
2
k

2
1

mn   

 forms an 

orthonormal basis. 

Let



M

0i
nini thty )()( 

be a solution of Eq. (3.15) 

where
)(),( ttyh i1i1


 for 1n  in which .,.  

denotes the inner product. 
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Let we denote 
)()( ttni

  
and 

)(),( ttyj
 

 




M

1i
i1i1 tttyty )()(),()(  

 
Consider the sequences of partial sums  







1n

1j
jj1n tW )(

and






1m

1j
jj1m tW )(

 

Then,

.)(),()(),(),(
21n

1j
j

1n

1j
jj

1n

1j
jj

1n

1j
jj1n ttyttyWty 
















  

Moreover,  

21n

1mi
i

1n

1mi

1n

1mj
jiii

1n

1mj
jj

1n

1mi
ii

2
1n

1mj
jj

2

1m1n

tt

tt

tWW



 












































)(,)(

)(,)(

)(

 
 

As n , by Bessel’s inequality, we get that 

21n

1mi
i






is convergent, it yields that 

 1nW  is a 

Cauchy sequence and it converges to W  (say). 

Now, we have 

0

tt

tW

tW

ttytWttyW

jj

jj

1n

1j
jj

n

jj1n
n

jj1n
n

jjj







































)(,)(lim

)(,lim

)(,lim

)(),()(,)(),(

which is satisfied only in the case if Wty )( .  

Thus, 




1j
jj tty )()( 

. 

 

 

 

 

 

 

 

4.  Numerical Results and Comparisons 

To demonstrate the effectiveness of our proposed 

generalized Legendre wavelet method (GLWM), we 

implement GLWM to some ordinary differential 

equations of linear form with constant and variable 

coefficients. All the numerical test examples were 

carried out with MATLAB R2015a. 

Example 4.1. 

We deem the differential equation 

.)(,. 00ytyy250                    (4.1) 

whose exact solution is given by

)1t4e(
4

1
)t(y t4  

. We apply Generalized 

Legendre wavelets (GLWM) for 3M  2k,  , 3 .  

For this choice of ,k,M , the function 

approximation for )t(y will take the summation form: 

,C)t(c)t(c)t(y T
m,n

3

1n

3

0m
m,nm,n

1k

1n

M

0m
m,n 



  
 



 

 

where

T
3,32,31,30,33,22,21,20,23,12,11,10,1112 ]cccccccccccc[C 

 and 

.)t()t()t()t()t()t()t()t()t()t()t()t()t(
T

3,32,31,30,33,22,21,20,23,12,11,10,1112 









      
Now, we approximate the function t)t(f  in terms of 

the set of the basis functions )t( as: 

.)()( 112
T tettf                            (4.2) 

where in this case the coefficient vector e  is given by 

 T
0524.0e 00   0.0302   0.261900  0.0302  0.157100  0.0302

,  

and we present the operational matrix of integration

1212P  as follows: 

 





































0

94/5005

0

0

0

0

0

0

0

0

0

0

94/5005

0

489/17045

0

0

0

0

0

0

0

0

0

0

489/17045

0

260/4053

0

0

0

0

0

0

0

0

0

0

260/4053

1/9

0

0

0

2/9

0

0

0

2/9

0

0

0

0

0

94/5005

0

0

0

0

0

0

0

0

0

0

94/5005

0

489/17045

0

0

0

0

0

0       

       0       

       0       

       0       

       0       

 489/17045  

        0       

  260/4053  

          0       

       0       

       0       

       0  

0

0

0

0

0

0

260/4053

         1/9

0

0

0
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0

0

0

0

0

0

0

0

0

94/5005

0

0

0

0

0

0

0

0

0

0

94/5005

0

489/17045

0

0

0

0

0

0

0

0

0

0

489/17045

0

260/4053

0

0

0

0

0

0

0

0

0

0

260/4053
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      Therefore, we obtain 

.)()( tPdxx 1121212

t

0x
112 


  

                    (4.3)                                                                                                 

Now we used this operational matrix in order to find 

the solution of the deferential Eq. (4.1).  

By integrating equation (4.1) and using equations (4.2) 

and (4.3), we have 

,dx)x(edx)x(ydx
dx

dy
25.0

t

0
112

T
t

0

t

0
 

 
which can rewritten in the following form 

.)()()(25.0 112 tPetCPtC TTT
 

Form which we obtain, 

.ePCPC25.0 TTT   
 

 

      Taking the transpose of the last equation we get the 

following system of equations  

ePC)PI25.0( TT  and I is the 1212

identity matrix. 

        Solving for the unknown vector C we

 T
C 5-1.89e   4-5.08e   0.0351   0.276   5-1.72e   4-2.95e   0.032   0.16   5-1.64e   5-9.67e   0.0305   0.0526

 Table 4.1. compares the approximate solutions gained 

using the proposed method and regular Legendre 

wavelet method [30] with the exact solutions. In 

comparison to the standard Legendre wavelets method, 

the proposed method clearly provides better accuracy. 

Remark 4.1. We take both algebraic systems derived 

from applying our proposed technique (GLWM) and 

(LWM) are of the same size for the sake of fair 

comparison.  

 

 
Table 4.1. Evaluation of differences between the approximate solution of example 4.1 using generalized Legendre 

wavelets for M = 3; k = 2; 3 , against the exact and Legendre wavelets 
[30]

 solutions for M = 3; k = 3. 

 

 
t 
 

Exact Sol. 
 

Generalized Legendre wavelets 
(proposed method) 

for M=3, k=2, 3  

Regular Legendre wavelets
[30]

 

 for M=3 and k=3 

Approximate Sol. 
 

Absolute Error Approximate Sol. 
 

Absolute Error 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.01758 

0.06233 

0.12529 

0.20047 

0.28383    

0.37268 

 

0.017559 

0.062345 

0.1253 

0.20048 

0.28384 

0.37268 

 

2.1156e-05 

1.253e-05 

2.6631e-06 

1.0317e-05 

2.6723e-06 

1.5045e-06 

0.01787 

0.06191 

0.12548   

0.20032 

0.28365 

0.37271 

2.9000e-04 

4.2000e-04 

1.9000e-04 

1.5000e-04 

1.8000e-04 

3.0000e-05 

 

 

Table 4.2 Evaluation of differences between the approximate solution of example 4.1 using generalized Legendre 

wavelets for M = 3; k = 2; 4 , against the exact and Legendre wavelets 
[30]

 solutions for M = 4; k = 3. 
 

 

t 

 

 

Exact Sol. 

 

Generalized Legendre wavelets 
(proposed method) for M=3, k=2,

4  

Regular Legendre wavelets 
[30]

 
for M=4 and k=3 

Approximate Sol. 

 

Absolute Error Approximate Sol. 

 

Absolute Error 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.01758 

0.06233 

0.12529 

0.20047 

0.28383    

0.37268 

 

 

0.017559 

0.062345 

0.1253 

0.20048 

0.28384 

0.37268 

2.1156e-05 

1.253e-05 

2.6631e-06 

1.0317e-05 

2.6723e-06 

1.5045e-06 

0.01787 

0.06191 

0.12548   

0.20032 

0.28365 

0.37271 

 

2.9000e-04 

4.2000e-04 

1.9000e-04 

1.5000e-04 

1.8000e-04 

3.0000e-05 
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Fig. 4.1. Absolute error comparison for Example 4.1 for M = 3; k = 2; 4 , against the Regular Legendre 
wavelets (RLWM) 

[27]
 solutions for M = 4; k = 3 

 
 
       The accuracy comparison between our proposed 

method (GLWM) and the standard Legendre wavelets 

method (RLWM) [30] is evident as shown in Tables 1 and 

2. Also, the absolute errors for both methods are 

compared in Fig. 1 as shown above. It is clear the 

suggested technique gives better accuracy compared to 

the regular Legendre wavelets. 

Example 4.2. 

     We deem the differential equation [3, 17] 

.)(,)()()(. 00ytutyty250 
                                                                                                                                                                         

                                                                  (4.4)                                                                                

Where )t(u  is the unit step function.  

The analytic solution of (4.4) is given by 

.e1)t(y t4  

      This problem has been solved by Legendre wavelets 

with k = 3, M = 3 by Razzaghi and Yousefi [3], and by 

Chebyshev wavelets, with k = 2, M = 3 by Babolian and 

Fattahzadeh, see [17]. We apply Generalized Legendre 

wavelets (GLWM) for 3M  2k,  , 3 . We 

suppose that the unknown function 

,C)t(c)t(c)t(y T
m,n

3

1n

3

0m
m,nm,n

1k

1n

M

0m
m,n  



  
 



 

where )t(  and C  are as the preceding example.  

 

       Integrating (4.4) from 0 to t and with the use of the 

operational matrix 1212P   as computed in Example 1, 

we obtain 

)5.4(.)()()(25.0 112 tPetCPtC TTT

 
The above Eq. (4.5) holds for all the time t in the interval 

[0 , 1). 

Thus, form which we obtain, 

)6.4(,25.0 ePCPC TTT 
  

where )(tu is expressed as 

  .)t(e)t(1
3

2
)t(u 112

T
112

T
  00   0   100  0  100 0

Equation (4.6) can be expressed in the following form 

).(, 74DQC 

where

.dPD,PI25.0Q TT 

Solving Eq. (4.7) for C , we obtain the approximate 

solution .C)t(y T  In table 4.3, a comparison is 

made between the approximate values using the 

present approach together with the exact solutions and 

the regular Legendre wavelets method. 
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Table 4.3. Evaluation of differences between the approximate solution of example 4.2 using generalized Legendre 

wavelets for M = 3; k = 2; 3 , against the exact and Legendre wavelets 
[3]

 solutions for 3M ; k = 2 and 3k  . 

   

        

 

 

 

 

 

 

 

 

 

 

 

 

        It is evident that the proposed method (GLWM) 

gives better accuracy compared to regular Legendre 

wavelets method (RLWM). Note the numerical results 

for the case 3M and 2k are taken from [3], while 

the approximate solution and the absolute error for 

3M and 3k , we wrote our own MATLAB 

program. The absolute errors for our suggested 

approach (GLWM) and the conventional Legendre and 

Chebyshev wavelets methods are contrasted in the 

following table 4.4 given below. The absolute errors 

displayed in the table below indicate how the 

suggested method (GLWM) outperforms the 

conventional Legendre and Chebyshev wavelets 

methods. 

Remark 4.2. 

      Since these are only the points 2.0,1.0,0.0t  

taken into consideration in [17], as can be seen in Table 

1 on page 425, in [17], we take into account the absolute 

errors at these points.  

Example 4.3. Bessel differential equation of order zero 

      We deem the differential equation [17] 

 .)(,)(, 00y10y0tyyyt                                                                                      
                                                                                       (4.8) 

A solution known as the Bessel function of the first kind 

of order zero denoted by
)t(J0  is (O’Neil 

[32]) 

q2

0q
2

q

0 )
2

t
(

)!q(

)1(
)t(J 






 .  We will first suppose 

that the unknown function )t(y   is given by 

.)t(C)t(y T
                                                                                                                        

                                                                                     (4.9) 

     Using the boundary conditions in (4.8) and (4.9) 

yields that 

.1)t(PC)t(y,)t(PC)t(y 2TT    

Now, approximating 1,t where 

).t(d1,)t(et TT    
Thus, our differential equation (4.8) is reduced to  

  ,0dPCePCCe T2TTTTT    
which can be written as 

)10.4(.0)()()( 2  deCPeCPCe TTTTTTTT T

 

      In order to solve the example under investigation, 

we will use the following feature of the product of two 

generalized Legendre wavelet function vectors: 

)11.4(,
~

)()( CttC TTT   

where
T

M,1k1,1k0,1kM,21,20,2M,11,10,1 ]c,...,cc,...,c,...,c,c,c,...,cc[C 


and in the same way we can gain )t(  and C
~

 is a 

MM 1jk1k    matrix. 

To represent the calculation process, we pick out 3M 

2k,  , 3 . 

In this case, we have 

Now, we approximate the function t)t(f  in terms of 

the set of the basis functions )t(  as: 

,)t(et)t(f 112
T

                                                                                                                   
                                                                                     (4.12) 

 

 

T 

 

Exact 

Solution 

(proposed method) for  

3M , 2k , 3  

Regular Legendre wavelets for 

3M  

Appr. Sol Absolute Error Appr. Sol 

2k
[3]

 

Absolute 
Error  

Appr. Sol. 

3k  

Absolute 
Error 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

  0 

 0.3297 

 0.5507 

 0.6988 

 0.7981 

 0.8647 

 0.9093 

 

0.0002416 

    0.3298 

    0.5506 

    0.6988 

    0.7981 

    0.8647 

    0.9093 

 0.0002416 

  8.462e-5 

  5.012e-5 

  1.065e-5 

  4.127e-5 

  1.069e-5 

  6.018e-6  

0.0002 

0.3284 

0.5523 

0.6980 

0.7987 

0.8653 

0.9091 

 2.0e-4 

 0.00128 

 0.00163 

 8.06e-4 

 5.97e-4 

 6.35e-4 

 1.82e-4 

0.0051813 

    0.3285 

   0.55233 

   0.69808 

   0.79872 

   0.86537 

   0.90912 

 

5.1813e-03 

1.1825e-03 

1.6606e-03 

7.3067e-04 

6.1326e-04 

7.0400e-04 

1.5817e-04 
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     where in this case the coefficient vector e  is given by 
T

27

2
e 








 00   

81

6

27

   25
00  

81

6
 

9

 2
00  

81

6

, 

and 
T

d 







 00   0

3

 2
00  0 

3

 2
00  0

3

2

. 

Moreover, we will use the following feature of the 

product of two generalized Legendre wavelet function 

vectors: 

)t()t( T


















T
33

T
22

T
11

00

00

00







,                                                                             

(4.13) 

where 

.3,2,1i,

3,i3,i2,i3,i1,i3,i0,i3,i

3,i2,i2,i2,i1,i2,i0,i2,i

3,i1,i2,i1,i1,i1,i0,i1,i

3,i0,i2,i0,i1,i0,i0,i0,i

T
ii 









































                                           (4.14) 

In (4.13) we used the fact that  
0l,kj,i  

   for 

.ki   
Also, we have    

,3,2,1,0j,3,2,1i,
2

3
j,ij,i0,i   

 

,3,2,1i,
10

6

2

3
2,i0,i1,ii,1   

 

,3,2l,3,2,1i,
10

6
1l,i1,i1,i  

 
 

.3,2,1i,
356

27
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Conserving only the elements of )t( yields that: 
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      From (4.11) we get 
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(4.17) 

where E
~

 can be computed in the same manner of (4.9) 

as follows: 
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Similarly, we can compute 2E and 3E
where we 

obtain:  
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Equation (4.17) is a set of algebraic equations which can 

be solved for C  which is given as: 

 

 

C =[-0.2343   0.001259  0.0003123  -5.349e-5   -0.2256  

0.003718 0.0003092  -1.943e-5   -0.2087       0.006028     

0.0002839     -1.285e-5]T . 

      The approximate solution utilizing the suggested 

approach (GLWM), the regular Legendre wavelets 

(RLWM) are compared in Table 3 to the solution 

function 
)(0 tJ

. Also, the absolute errors for both 

methods are compared in Table 3 and Fig. 2 as shown 

below. It is clear the suggested method gives better 

accuracy compared to the regular Legendre wavelets. 

 

 

 

 

 

 

Table 4.4. Evaluation of differences between the absolute errors of example 4.2 using generalized Legendre wavelets 

for M = 3; k = 2; 3 , against Legendre wavelets 
[3]

 and Chebyshev  wavelets method 
[17]

 

 

T 

 

(proposed method) 
for  

3M , 2k , 

3  

          Legendre wavelets for 

      2k  

     Chebyshev wavelets 
       Method 

[17]
 

Absolute Error 
 

Absolute Error  

3M  

Absolute 
Error 

4M  

Absolute Error  

3M  

Absolute Error 

4M  

Absolute 
Error 

5M  

0.0 

0.1 

0.2 

 

2.4160e-04 

8.462e-5 

5.012e-5 

 

 

 

 2.0e-4 

   1.2800e-03 

   1.6300e-03 

 

 

 

5.1813e-03 

1.1825e-03 

1.6606e-03 

 

    1.2700e-02 

   1.4500e-02 

   3.8000e-03 

   2.1000e-03 

   1.3200e-03 

   1.7000e-03 

0.2038e-3 

0.0208e-3 

0.1467e-3 

The absolute errors list in the table above show the demonstrate the superiority of the proposed method (GLWM) 

against the regular Legendre and Chebyshev wavelets methods. 

 

 

Table 4.5. Evaluation of differences between the approximate values using our proposed approach (GLWM), (RLWM) 

together with the solution of 
)(0 tJ

. 

 

T 

 

Exact solution 

)(0 tJ  

Generalized Legendre wavelets (proposed 

method) for M=3,k=2, 3  

Regular Legendre wavelets for 

M=3 and k=3  
[17]

 

Appr. Solution Absolute Error Appr. solution Absolute Error 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.997502 

0.990025 

0.977626 

0.960398 

0.93847 

0.912005 

0.997501 

0.990025 

0.977626 

0.960398 

0.93847 

0.912005 

 

 

 

 

2.6760e-07 

4.8122e-08 

1.0624e-07 

8.9834e-08 

7.0354e-08 

4.3358e-08 

0.997502 

0.990024 

0.977625  

0.960396 

0.938468 

0.912004 

 

4.3793e-07 

9.7224e-07 

1.2465e-06 

2.2267e-06 

1.8072e-06 

8.6350e-07 
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Fig. 4.2. Absolute error comparison for example 4.3, M=3,k=2, 3 against the Regular Legendre wavelets(RLWM) 
[17] solutions for M=3 and k=3 

 

5. Conclusion 

       In this paper, a novel and accurate mechanism so as 

to find the solution of linear differential equations over 

the intervals [0, 1) based on the generalization of 

Legendre wavelets is offered. Our technique reduced 

the problems into algebraic equations through the 

features of generalized Legendre wavelet (GLW) 

simultaneously with the operational matrix of 

integration. We chose the function approximation in 

such a manner so as to compute the connection 

coefficients in an easy manner. The proposed numerical 

technique, based on the GLW, has been examined on 

three linear problems as a consequence of this 

investigation. The primary purpose of this work has 

been to use the proposed generalized Legendre 

wavelets to solve linear differential equations. Examples 

4.1-4.5 demonstrate that the proposed method with 

fewer bases can solve the problems covered in this 

paper with more accurate results. 
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