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A R T I C L E   I N F O                           A B S T R A C T  

 

1. Inrtoduction   

       Currently, Machine learning techniques have 
received a great deal of attention, especially, its 
promising subset deep learning. Deep learning has been 
used extensively in a variety of scientific and 
engineering fields, including device design [1,3], an 
inspection of electronic chips in semiconductor  
 
 

 
production lines [4], computer vision [5], and natural 
language processing and cognitive sciences [6]. There 
has also been a tremendous effort to use deep 
learning in the field of photonic devices, particularly 
in analyzing and predicting waveguide 
characteristics as in [7,10].  
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 Over the past few years, deep learning has proved to be an efficient and fast tool 

in many areas, particularly in the field of photonics. The design of integrated 

optical devices relies on optical waveguides which requires reliable and fast 

methods for determining the waveguide's characteristics before fabrication. In 

this work, the newly emerging paradigm of physics-informed neural networks 

(PINNs) is employed for analyzing and predicting the fundamental transverse 

electric (TE) mode and effective refractive index (η) of a slab waveguide. PINNs 

are particularly useful, as they are a data- and mesh-free method, solving the 

most critical problems of computational modeling, such as speed and 

computational hardware cost. The proposed model has a prediction accuracy of 

up to 99%, with the effective refractive index relative error ranging between 10-5 

and 10-6. The model results are validated against finite difference time domain 

method using Lumerical software and variational method. 
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       However, these works have used supervised 
learning – more or less - to accomplish great results 
which need to train the model on data with known 
input and output, this data needs to be prepared first 
before training the model, which may take time and 
resources. In this work, a suggested model was built to 
predict the characteristics of the waveguides without 
supervision and only know about the physics of the 
device through boundary conditions. The physics-
informed neural network (PINN) has been proposed by 
Raissi et al [11] to fill the gaps between deep learning and 
solving differential equations that started in 1990 by 
Hyuke Lee [12], followed by Lagaris et al [13].  This work 
aims to demonstrate the applicability of PINNs based 
method to a well-known problem in the optical devices 
field to predict the fundamental transverse electric (TE) 
mode of the dielectric slab waveguide. On the other 
hand, the suggested method might be upgraded to 
predict the other modes. 
        The paper consists of seven sections; Section 2 
describes the dielectric waveguide concepts, the 
modeling parameters, and techniques for analyzing 
waveguides. Section 3 defines the slab waveguide 
problem. Besides, Section 4 presents the fundamentals 
of the physics-informed neural network, the suggested 
method based on it, and the implementation details. 
Furthermore, section 5 shows the results of the 
suggested method. The interpretation of the results and 
impact of the proposed method on the field of 
photonics are discussed in section 6. Finally, the paper is 
concluded in Section 7. 
 

2. Analyzing Waveguides 
       Over the past years, optical waveguides have been 
the basic elements for confining and transmitting light 
efficiently over various distances, ranging from tens or 
hundreds of micrometers in integrated photonics to 
hundreds or thousands of km in long-distance fiber-
optic transmission [14,15]. Various structures of 
waveguides have been made, and the choice of these 
structures is governed by the desired frequency band, 
the amount of power to be transferred, and the amount 
of transmission losses that can be tolerated.  
       Optical waveguides also form a key element in 
semiconductor lasers, acting as both passive and active 
devices such as waveguide couplers and modulators [16]. 
There are two types of waveguides: metallic waveguides 
and dielectric waveguides [17], and in this article we are 
interested in the latter. Dielectric slabs are thin layers of 
high-index material, which may be referred to as films or 
cores, placed between two layers: the upper layer is called 
the cladding and the lower layer is called the substrate [18]. 
        
 
 

 

       There are two types of dielectric waveguides: planar 
and non-planar. Planar waveguides consist of a core film 
with a higher refractive index than the substrate or the 
cladding. Symmetric waveguide designs are achieved 
when the cladding and substrate have the same 
refractive index, while anti-symmetric waveguides are 
obtained otherwise.  
        In any waveguide, two of the most important 
characteristics to be aware of are the propagating 
modes and the effective refractive index. A waveguide 
mode is a transverse field pattern whose amplitude and 
polarization profiles remain constant along the 
longitudinal z-coordinate. A guided mode can only exist 
when a transverse resonance condition is satisfied, such 
that the repeatedly reflected wave has constructive 

interference with itself. The effective index is the ratio of 
the propagation constant in the waveguide to the free 
space propagation constant, as in 

     
  

  
                                                       (1) 

Where,   is the propagation constant and   is the free-
space wavelength.  
2.1. Techniques for analyzing waveguides 
         The electromagnetic fields propagating along the 
waveguide are composed of guided modes, also known 
as eigenmodes. These electromagnetic fields can be 
analyzed using three approaches: analytical, numerical, 
and the more recent, promising deep learning 
approach. The analytical solution is acquired by solving 
Maxwell's equations [19]. However, only simple 
waveguide geometries can be solved in this way [20]. 
However, only simple waveguide geometries can be 
solved in this way. For this reason, and due to the 
practicality of more complex waveguide geometries, the 
numerical approach has become the more appropriate 
choice.           
         Numerical methods are built upon approximations 
of the exact solution to the standard one, with the aim 
of minimizing the error between the two solutions [21]. 
There are various numerical methods available, such as 
the finite difference method (FDM) [22], finite element 
method (FEM) [23], method of lines (MoL) [24] and beam 
propagation method (BPM) [25] There are various 
numerical methods available, such as the finite 
difference method (FDM), finite element method (FEM), 
method of lines (MoL), and beam propagation method 
(BPM), which can be used to solve the eigenmode.                         
         These methods have had great success in analyzing 
complex waveguide structures in recent years, leading 
to very established software in the field built upon these 
methods, such as Lumerical software [26], COMSOL 
software [27], among others.  
 
 
 

 



 Nasr Gad et al /Egy. J. Pure & Appl. Sci. 2023; 61(1):1-10 

  

      However, these methods or software come with 
some sacrifices in terms of speed of analysis and 
computational resources used as waveguides become 
more complex. As for the deep learning approach, it has 
been reported to successfully design [28], predict modes 
[29,30] and properties of photonic waveguides. In all of the 
reported articles, they used what is known as “supervised 
learning”, wherein the user has input variables (X) and an 
output variable (Y), and an algorithm is used to learn the 
mapping function from the input to the output.  
        The goal is to approximate the mapping function so 
well that when new input data (X) is presented, the 
output variables (Y) can be accurately predicted. 
Although these previous articles and others obtained 
very good predictions that were close to the results of 
numerical methods, and after training, the model can 
make its predictions in milliseconds, the data must first 
be prepared using numerical methods or software and 
preprocessed in order to be ready to train the deep 
learning model. Our proposal here is to use the 
capabilities of deep learning methods to predict the TE 
mode and Neff of a slab waveguide when no prior 
knowledge about it is available to the model. This falls 
under the type of deep learning called “unsupervised 
learning”, wherein only input data (X) is available and no 
corresponding output variables.  
         The goal of unsupervised learning is to model the 
underlying structure or distribution in the data, 
governed by certain constraints (in our case, boundary 
conditions), in order to learn more about the data. Since 
waveguides are physical systems governed by physical 
laws, we need a model to be guided by not just random 
statistical methods, but also with physics constraints. In 
other words, we want to empower the deep learning 
model with known physical laws. Raissi et al. [11] 
presented what is called physics-informed neural 
networks (PINNs), which intend to solve inverse and 
direct problems by different types of partial differential 
equations (PDEs).  
         The loss function of a PINN consists of several 
terms, including different governing equations and 
boundary conditions. In particular, the training data 
used by this framework can be provided by a sample 
within the domain of definition of the problem itself, 
without needing to generate data as in a supervised 
approach. PINNs have been used successfully in many 
fields to solve PDEs, such as material science [31], fluid 
mechanics [32]. In this paper, we aim to predict the 
characteristics of a waveguide by solving its eigenvalue 
problem with the help of PINNs. Our intention is not 
to replace the conventional solutions for eigenvalue 
problems, but to demonstrate the power and 
effectiveness of neural networks in the future of 
waveguide design and the field of photonics in 
general. 

    

3.  Slab Waveguide Problem Definition 

       Consider a slab waveguide as in Fig. 1. It consists of a 
film region with thickness   and refractive index    , 

sandwiched between cladding and substrate with refractive 
indices    and    respectively.  

        The three indices are chosen such that    is bigger 

than           in order for total internal reflection to occur 
at the interfaces [33]. If the cover and substrate materials 
have the same index of refraction, the waveguide is 
called "symmetric", otherwise the waveguide is called 
"asymmetric". The symmetric waveguide is a special 
case of the asymmetric waveguide. Conventionally we 
take z-axis is the direction of propagation for 
electromagnetic field. There are two possible electric 
field polarization, transverse electric (TE) or transverse 
magnetic (TM). As a special case, we restrict our analysis 
to TE modes, which have     . In the TE case, the E-
field is polarized along the y-axis. We assume that the 
waveguide is excited by a source with frequency    and 
a vacuum wave vector of magnitude        .  

        Now we have to solve the Helmholtz’s wave 
equation in each dielectric region to find the allowed 
electric fields or modes, and then use the boundary 
conditions to connect these solutions. If   is the 
domain of the slab waveguide such that,       
then, Helmholtz equation becomes 
 

    

   
  

    

   
  

    

   
 (  

    
 )                                  

(2)     
where             , depending on the location. If we 

assume that our slab waveguide is infinite in the y-

direction and due to the translational invariance of the 

structure in the z-direction, we do not anticipate the 

amplitude to vary along the z-axis, but we do expect 

that the phase varies. So the trial solution for equation 

(2) will be  

  (   )    ( )  
                   (3)                                 

Where   is a propagation coefficient along the z-

direction, substitute this in equation (2), since  

      
    

   
    

    

   
 (  

    
     )                       (4) 

The objective of this study is to solve equation (4) for unknown 

field    (x) and   which are eigen function and eigen value, 

respectively. The solution of this equation has two parts. The first 

part describes the solution for the cladding or substrate regions, 

where        , and has a real exponential form given b  

  ( )      
  √          

         for                            (5)                        
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                                                                               Fig. 1 The slab waveguide  

 Where E0 is the field amplitude. The second part 

describes the solution for the core regions, where  

       and the solution has an oscillatory form 

given by 

  ( )      
  √      

              for                                     

                                                                                           (6) 

 In other words, based on the value of   the solution 

can be either oscillatory or exponentially decaying. 

Therefore, the guided must satisfy the condition 

given by 

                                              (7) 

          To find the values of   that lead to allowed 

solutions or the eigen values to the wave equation, 

we must apply the boundary conditions to the 

general solutions developed in equation (5) and 

equation (6).  

Assume that   satisfies equation (7). Then the 

transverse portions of the electric field amplitudes in 

the three regions are 

  ( )  

{
 

    
 √          

   
   

     (   )       (   )      

   √  
        (   )     

 

(8) 

 

Where A, B, C and D are amplitudes coefficients that 

will be determined from boundary conditions.    is 

the transverse component of wavenumber   in the 

guiding film [33]. So when training the model, we have 

to make sure that we satisfy the boundary conditions 

to predict the eigen values and eigenvectors 

represented in our case from equation (4) as   and 

   , respectively. To achieve this we will use what 

Lagaris et al. proposed for solving PDEs. 

4. The Suggested Physics-Informed Neural 
Network based method 

       The framework of PINNs is based on neural 

network and described in previous published work. 

The neural network unit is described as: 

 

    ( )     (       )                         (9) 

                                                                                

Where W is a matrix and b is a vector represents 

weights and biases of neural network, x is the input 

vector to the network.   denotes the nonlinear 

activation function [34]. W   ℝNn , b   ℝNn * 1. The 

deep learning (DL) approach deals with more than 

one neural network, which form a multilayer neural 

network with linear output described as 

 

  ( )    (                      ( ) )           

                                                                                         (10)   
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 WL   ℝN
L
* N

L-1, bL   ℝN
L
 * 1. According to [35] who 

states that "A function neural network can 

approximate any smooth function arbitrarily close 

provided a sufficient number of neurons Nn. 

Consequently, the objective of a DL network is to 

estimate the value of u, Fig. 2 illustrates the PINNs-

based solution’s framework for solving the dielectric 

slab wave guide is shown. The left part shows the 

Fully Connected Neural Network, FNN(x,  ) where 

   *     +     . – 

       The FNN takes x as input to predict the solution 

Ey. This input represents a vector of points belong to 

the domain which dedicated for the waveguide, x   

[-x, x]. This domain should cover the waveguide from 

substrate to cladding including film regions. We have 

to choose the width of cladding and substrate wisely 

to give the propagated field enough space to decay 

outside the film region. Also we found that choosing 

appropriate domain will help to find the solution 

much faster. By applying chain rule, the derivatives 

of Ey with respect to inputs can be computed 

automatically [36].  

        Then the FNN can be learned through the 

parameters of   by minimizing the mean square 

error of the loss functions shown in  

 

       
          

         

                                                   

                                                                                      (11) 

Where,  

   [
    

   
 (  

    
     )   ]

 

                             (12) 

 

   [ 
        (                 )]

 
              (13) 

 

      ,      -
 
    

 
                                               (14) 

 

     ,  -
                                                            (15) 

 

Such that, u represent the function to optimize in 

equation (10). The first term in equation (11) is 

the fidelity term for the eigen function. The 

second term represents the eigen value loss. The 

third term imposes boundary conditions, and ∂Ω 

is the boundary. The final term is the 

conventional weight decay term which stabilizes 

the network weights. The total loss function is 

calculated by taking the average of all the losses 

components. 

 

  

4.1. Implementation details 

         Our network is constructed as a fully connected 

network with a four-hidden-layer architecture, each 

layer containing a varying number of neurons from 

30 to 80. We use PyTorch library [37] for our 

implementation. The Iterations varies between 

            according to the thickness and 

refractive indices of the waveguide, but we found 

that        iterations are enough to reach stability 

in our network for most tested cases. For NN 

optimization, the Adam optimizer [38] is used in our 

implementation, with its parameters set to the 

default. Our point set consists of 1000 training points 

and 100 boundary points.  

5. Results 
        We will analyze a symmetric slab waveguide 

with the following parameters          ,    

   , a film thickness of 0.5, and a wavelength of  

      . We could achieve the propagation 

constant          as in Fig. 3. According to 

equation (1), the resultant effective refractive index 

is                 , which is very close to the 

ground truth obtained from Finite difference method 

using FDTD [39] and variational method [40] with a 

relative error      .  

         Fig. 4 shows the predicted fundamental mode (TE mode) 

   with a relative error     . The training time ranges from 

60 to 120 seconds, while predictions happen in milliseconds 

after the model finished training. There are some errors at the 

sides, which is a problem encountered when the model 

exponentially decays in the substrate and cladding; however, 

the matching in the core region and most parts of the sides are 

very close, indicating that the model has successfully predicted 

the TE mode, especially in the core region.  

          The proposed model has been tested over various 

symmetric and anti-symmetric waveguides with different 

refractive indices for each. Symmetric and anti-symmetric cases 

are represented in Tables 1. and 2., respectively. The proposed 

model achieved very high accuracy of 99% for predicting the 

propagation constant. Fig. 5 shows a relative error of predicting 

ranges between 10-5 and 10-6. The green bars indicate 

waveguides with much variation between both cladding, 

substrate, and core, which results in two important 

observations in the simulation: first, as the spacing between the 

cladding, substrate, and core increases, the time taken for the 

model to find the right propagation constant increases; second, 

an increase in the margin between these three values leads to a 

decrease in the value of the propagation constant, resulting in a 

much lower error. 
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Fig. 2 Schematic of proposed PINNs for solving dielectric waveguide. The right most part represent the neural network 

layers with input x and two outputs, electric field and propagation constant. The left most part represent the loss factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 The propagation constant vs epochs compared to the calculated by mode solver (in case of symmetrical 
waveguide). The relative error of propagation constant is 10

-5
. 
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Fig. 4 The predicted fundamental mode for a symmetric waveguide compared to the calculated using mode solver. The 

calculated relative error of the mode profile (Ey) is 10
-2

. 

 

Fig. 5 Predicted      error (from Table 1. and Table 2.) over different waveguide structures 

 



Nasr Gad et al Egy. J. Pure & Appl. Sci. 2023; 61(1):1-10 

  

  

Table 1. Data and Accuracy for Symmetric waveguides 

 Waveguide 

Parameters 

Numerical 

Propagation 
constant (βeta) 

from Lumerical
26

  

Predicted 

Propagation 
constant (βeta) 

Numerical 

effective 
refractive index 

from Lumerical
26

  

Predicted 

effective 
refractive index 

Accuracy of DL 
model 

(Predicting 
βeta) % 

 

RELATIVE 
ERROR (NEFF) 

WG1 

n_clad: 1.3 

n_core: 1.4 

n_sub: 1.3 

8.40362314 8.40364647 1.33746946 1.33746946 99.999722 6.50478E-06 

WG2 

n_clad: 1.5 

n_core: 1.6 

n_sub: 1.5 

9.6781004 9.67789268 1.54025924 1.54025924 99.997854 3.78364E-05 

WG3 

n_clad:  1.8 

n_core:  1.9 

n_sub:  1.8 

11.5864674 11.58618927 1.84395313 1.84395313 99.9976 4.90335E-05 

WG4 

n_clad: 1.2 

n_core: 1.5 

n_sub: 1.2 

8.72670695 8.72682667 1.38891697 1.38891697 99.998628 1.32623E-05 

WG5 

n_clad: 1.2 

n_core: 1.9 

n_sub: 1.2 

11.1235727 11.12366867 1.7704208 1.7704208 99.999138 2.77964E-05 

 

Table 2.  Data and accuracy for Anti-symmetric waveguides 

 

 Waveguide 

Parameter 

Numerical 

Propagation 

constant (beta) 

from Lumerical 
26

 

Predicted 

Propagation 

constant (βeta) 

Numerical 

effective 

refractive index 

from Lumerical
26

   

Predicted 

effective 

refractive index 

Accuracy of DL 

model 

(Predicting βeta) 

Relative Error 

(Neff) 

WG1 

n_clad:  1.2 

n_core:  1.3 

n_sub:  1.25 

7.87668759 7.87668759 1.25361376 1.25352216 99.99292178 7.30767E-05 

WG2 

n_clad: 1.3 

n_core: 1.4 

n_sub: 1.35 

8.50934836 8.50934836 1.35430485 1.35437298 99.99473806 5.03063E-05 

WG3 

n_clad: 1.4 

n_core: 1.5 

n_sub: 1.45 

9.14197757 9.14197758 1.45499092 1.45507646 99.99389032 5.87907E-05 

WG4 

n_clad: 2.45 

n_core: 2.55 

n_sub: 2.4 

9.77454734 15.67880255 1.55566752 2.49539018 99.99852236 1.25232E-05 

WG5 

n_clad: 1.55 

n_core: 3.5 

n_sub: 1.5 

10.40703934 21.36351863 1.65633175 3.40014267 99.99879881 9.7291E-06 
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6. Discussion 

       This paper presents an analysis of the effective 

indices of slab waveguides with very high accuracy, 

as demonstrated in Tables 1 and 2. The model 

achieved an accuracy of 99%, taking between 60 and 

120 seconds to reach stability during the training 

phase. After training, the model can provide 

predictions in milliseconds with relative error ranges 

between 10-5 and 10-6. This accuracy was found to be 

comparable to other popular and commercial 

software used in the integrated photonics industry. 

        The results of the analysis of the symmetric slab 

waveguide provide a strong indication of the 

accuracy and efficiency of the proposed model. This 

model is capable of providing accurate predictions in 

a short amount of time, making it beneficial for those 

seeking to use it in real-time applications. 

Additionally, the model can be applied to a variety of 

waveguide designs, allowing for faster and more 

accurate predictions in many scenarios. 

 

7. Conclusion 

        Our experiments have demonstrated the 

capabilities of PINNs to solve the slab waveguide 

problem, achieving very good accuracy for its 

propagation constant and effective refractive index 

of 99% and 10-6, respectively for its transverse 

electric mode. The model shows promising results for 

simple structures, such as slab waveguides, and can 

be extended in future work to solve complex 

structures. 

         The main aim of this study is to present an 

alternative approach that can be developed to solve 

the main problems of analyzing photonic structures: 

speed and computational cost. We hope that this 

work will motivate other researchers in the field of 

photonic devices to create a more efficient tool, with 

fewer steps and less time than the conventional 

methods, in the near future.  
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