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The full polarimetric Synthetic Aperture Radar (SAR) data offers plentiful information 

about the geology, geomorphology, hydrology, land cover and soil classification and 

therefore helps in assessing their potential for development. In this paper, the full-

polarimetric SAR (ALOS/PALSAR L-band sensor) data used for mapping different 

geological units and land features, which are covering some parts of the Greater 

Cairo area, Egypt. This paper includes data collection, data interpretation, and a 

validation tool, as well as methodology and preliminary findings. The ALOS/PALSAR 

images were extracted, decomposed, filtered and geo-referenced. Unsupervised 

classification scheme with 5 classes was performed for Radar data using (Wishart H-

A-α unsupervised classifier), and it exposed to the supervised classification 

technique with the assistance of the published geologic and geomorphological maps 

and the high resolution Landsat images ratio techniques. These five classes are 

categorized as follows; Urban areas: which covers 22% of the study area, Agriculture: 

canopy covers 53% of the study area, The Nile: about 73 km of the Nile passing 

through the study area, and two geological Units, Te (Tertiary, which represents 

sands and sandstones with clay and marl), and Tp (Tertiary Pliocene, which 

represents sands, sandstone and gravels). Moreover, the classification accuracy 

assessment (CAA) was performed for the obtained results using 327 ground control 

points. The CAA showed classification accuracy around 81.82% with Kappa 

coefficient of 0.8344. This research shows that using full-polarimetric ALOS/PALSAR 

data, the land cover and geology of Greater Cairo, Egypt, can be accurately mapped 

without suffering and wasting time, effort, or facing hazards. 
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1. Introduction  
   For decades, multispectral sensor systems like Landsat 8 

have provided precise land-surface data sets, making 

spaceborne remote sensing a valuable technology. Sensors 

on the Landsat 8 Data Continuity Mission (LDCM) detect the 

reflectance of the sun's energy on the surface in various 

wavelengths, including visible and infrared. The active sensor 

SAR (radio detection and ranging) emits and receives short 

  

wavelengths that are significantly longer than those 

detected by optical devices. 

   Long-wavelength radar can penetrate clouds, water 

vapor, dust winds, and rains which would delay the 

wavelengths of the ordinary space-borne optical and 

multispectral systems [1,2]. The long-wavelength of 

radar signals makes it difficult and costly to achieve 

sufficient  resolution in   the   cross-range   direction of           
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real aperture radar systems due to the length of 

antennas required. As a consequence, imaging static 

radar systems is not possible. SAR's concept was to 

send out radar pulses and store the echoes of these 

pulses, integrating a scene along the path of the SAR 

sensor (i.e. synthetic aperture), and then combine 

these echoes using focusing algorithms. This mixture is 

done in a logical manner [3]. 

   Geological mapping is needed at various scales and 

can be done using various methods and content such 

as; local geophysical surveys, local geochemical 

investigations, geological surveys and evaluations, 

remote sensing (RS), strategic mineral assessment, and 

marine geological surveys. since the beginning of 

remote sensing technology, this data has been used by 

geologists for mineral detection and tracking, local 

mapping, mineral resource exploration, environmental 

monitoring, and monitoring of oil and gas drains. 

Remote sensing is a tool that can be used with 

confidence and efficiency in almost every field of earth 

science [4-22]. 

   SAR data produce different information from the 

optical one, which operates in the visible and infrared 

regions of the electromagnetic spectrum. SAR sensors 

generate and emit a direct beam pulse of specific 

radar-frequency energy, and then record higher 

resolution reflected ones along the terrain that build 

the SAR data. The physical properties of the surface 

features dominate the SAR data (for example, surface 

roughness, geometric structure, and orientation).  The 

SAR sensors can acquire the data day and night 

without considering the cloud cover rain, or weather 

status, [23] and produce a technical overview of the 

radar wave with its surface interactions and 

applications. 

   SAR images produce a treasure of geological and 

mineral information, including lithology, geological 

structure, and hidden geological features. This is 

particularly true for meteorite impacts, volcanic 

deposits, and large faults [24-27]. By using ground-

penetrating radar (GPR) or especially the ground 

Sentinel-1 image we can obtain real time quantitative 

measurements of the surface deformation. The study 

of Sentinel-1 data has become an important work for 

national and international organisation engaged in 

seismic science, disaster assessment, and civil defense. 

 The following are the key guidelines for analyzing 

earthquakes using Sentinel-1 data: (a) the detection and 

evaluation of hypocentres [28]. (b) the detection and 

evaluation of secondary disasters (for example, 

earthquakes, surface fractures, landslides, mudslides, 

and surface collapses) [29]. (c) Estimating the seismic 

sequences' short-term spatial evolution [30]. In recent 

years, SAR monitoring of surface deformation and 

geological hazards has become a major concern [31]. This 

system has been widely used in mine surface 

monitoring, urban surface monitoring, mine surface 

monitoring, dam peripheral surface monitoring, and 

other geological conditions due to its suitability for large-

scale ground deformation. Table in [32] summarize recent 

studies that manipulate SAR data with spatial resolutions 

greater than 10 m. 

   In this study, the full-polarimetric SAR ALOS/PALSAR L-

band sensor data was integrated with the Landsat 8 data 

to run supervised and unsupervised classifications for 

mapping the different geological units and land features 

covering some parts of the Greater Cairo area. 

1.1 The study area 

   The study area is 1,912 km2, with a 190 km perimeter. 

And is located in the upper centre of Egypt with Upper 

Left Latitude 30.112, Upper Left Longitude 31.062, 

Upper Right Latitude 30.158, Upper Right Longitude 

31.329, Lower Left Latitude 29.549, Lower Left 

Longitude 31.195, Lower Right Latitude 29.596, and 

Lower Right Longitude 31.46, Fig. 1. 

   The oldest exposed rocks in this study area date to the 

Late Eocene, and they are represented by the Maadi 

Formation and Anqabiyah Formation that appear in the 

southern part and two outcrops of Gabal Anasuri and 

Gabal El-Anqabiyah Fig. 2. According to [33] Claystone and 

marls are characteristic of the Upper Eocene east of Cairo 

City. The Oligocene sediments overlie the Upper Eocene 

rocks and consist of the Gabal Ahmar Formation which is 

made up of sandstones and gravels with silicified pipes 

and tree trunks. The Gabal Ahmar Formation represents a 

wide area, Formation, Oligo-Miocene basalt flows cover 

the Oligocene sediments in some parts and they are 

scattered in some localities, mainly close to the Cairo-Suez 

highway Fig. 2. The exposed Miocene rocks in the study 

area are categorised as Middle Miocene marine deposits 

(Homath Formation), and Upper Miocene non-marine 

deposits (Hagul Formation), [34]. 
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Fig. 1 Location map of the study area, a: Landsat 8 Satellite Image, b: Basemap of the study area 

 

 

 

 

   The study area is from the late Pleistocene, which is 

represented in the valley by Neonile deposits that are 

lowering their course at a rate of 1m/1000 years [35] 

and represented in the eastern desert margin by rock 

formations that are Eocene, Pleistocene, and Holocene 

Fig. 3. These are the most numerous, and they cover a  

 large portion of Cairo City's eastern outskirts. Eocene 

rocks are generally composed of bedded Carbonates 

and Calistics in varying proportions, alternating with 

marl and shale. The fractures, joints, and bedding 

planes play an important role in the frequency of 

rockfall in this area. 
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Fig. 2 Flow chart showing the pre-processing and processing steps for polarimetric segmentation of the radar data of 
the study area 

 

Fig. 3 Landsat 8 satellite image band ratio calculations for the study area, a: represents the NDVI (Normalized difference 
vegetation index), NDVI=(NIR-Red), b: represents the water index, NDWI=(NIR-MidIR)/(NIR+MidIR), c: the moister 
stress 
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2. Materials and methods  

   In this study, as shown in Fig. 2 four different 

sources of data: the ALOS/PALSAR image, Landsat 

8, geology, and geomorphology maps of Greater 

Cairo were used and processed. The ALOS/PALSAR 

is a satellite that carries L-band SAR (Synthetic 

Aperture Radar) sensor with a wavelength of 

0.2360571 m. The used radar image was acquired 

on May 24, 2007 with the standard quad-pol (Fine) 

mode (i.e. Fully polarimetric) with "CEOS" format 

and data level 1.1, SLC mode (Single Look Complex 

mode) with ascending direction, the backscatter is 

received in the four polarimetric polarizations (HH, 

HV, VH, and VV), The nominal azimuth resolution is 

4.5 m, the nominal slant range resolution is 9.5 m, 

and the incidence angle of the image centre is 

23.846°.  

   In addition, the Landsat 8 satellite image band 

ratio calculations were used to be compared with 

the radar classified data, Fig. 3. Different image 

processing techniques were used to enhance the 

Landsat 8 image and distinguish between the 

various land covers along the study area. 

Resolution merge, false color composition (FCC), 

and principal component analysis (PCA) are 

examples of these techniques. In the FCC image 

band-3, band-5, and band-7 in RGB were used. 

Water bodies and urban areas were mapped using 

Band-3 (Blue), while the vegetation cover was 

mapped using Band-5 (NIR), and rock units were 

mapped using Band 7 (MIR). The spatial resolution 

of the image (panchromatic image) was improved 

by combining the spectrum information of lower 

spatial resolution image (multi-spectral image) with 

that of the high spatial resolution image [35]. 

   The geology and geomorphology maps of Cairo 

were mapped and compared to the obtained 

classified image Fig. 4 & 5. 

   The Landsat-8 image was enhanced to distinguish 

between different land covers and geological units. 

The Arc GIS and ERDAS IMAGINE (2014) softwares 

were used to help interpret and compare the 

results with those obtained using the ALOS/PALSAR 

image.  

   The PolSAR Data Processing and Educational 

Toolbox (PolSARpro) was used in this study, along 

with the free softwares SNAP, ERDAS Imagine, 

ArcGIS, and NEST. 

 Furthermore, the Freeman three-components 

decomposition was used to observe the three 

components of the scattering mechanism and 

construct the T3 matrix [36] along the Greater Cairo 

research region, which is a technique for fitting 

physically-based decompositions. The 3×3 coherency 

matrix (T3) is considered the most important matrix, 

measured by radar system, and it can be written as the 

following: 

 
 

Shh and Svv denote co-polarized complex scattering 

amplitudes, respectively; Shv and Svh denote cross-

polarized complex scattering amplitudes. 

   This T3 matrix can be averaged to reduce the noise 

and enhance the classification accuracy at the expense 

of spatial resolution [37], then it can be georeferenced 

and filtered with the Lee refined filter. 

   Moreover, the polarimetric target decomposition, 

Pauli RGB, and Wishart unsupervised classification 

were used to distinguish and map the various surface 

sediments and rock units in order to extract and 

characterize the different scattering responses of the 

different land covers and geological units, we used the 

H / A /  algorithm as an unsupervised classification 

algorithm that it was evolved as shown in Fig. 5, terrain 

classes can cause feature clustering in the H /  plane. 

The observable alpha values for a given entropy are 

limited by curves I and II because the averaging of the 

many scattering mechanisms limit the range of 

potential values as the entropy grows (i.e. the shaded 

areas are not valid). This is due to the fact that as 

entropy increases, the averaging of the various 

scattering processes narrows the range of possible 

values. The H /  plane is a useful representation of 

the information in the coherency matrix since H and  

are both invariant to the type of polarization basis 

utilized. 

   When the entropy is high, the ability to distinguish 

various scattering mechanisms is severely restricted, as 

shown by the bounds in Fig. 6 (Curves I and II). Cloude 

and Pottier have suggested an initial partition into 9 

classes (8 usable) [38], the classes that were chosen 

based on general scattering mechanism properties 

rather than a specific set of data. 
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unsupervised signal classification, which is based on 

signal physical properties. Cloude and Pottier's 

proposed class interpretation is as follows (for more 

information, see [39, 40]): 

• Class Z1: high entropy double-bounce 

scattering,  

• Class Z2: high entropy multiple scattering 

(e.g. forest canopy),  

• Class Z3: high entropy surface scattering,  

•  Class Z4: medium entropy multiple 

scattering,  

• Class Z5: medium entropy vegetation 

(dipole) scattering,  

• Class Z6: medium entropy surface 

scattering, 

• Class Z7: low entropy multiple scattering 

(double or even bounce scattering);  

• Class Z8: low entropy dipole scattering 

(strongly correlated processes with a 

significant amplitude imbalance between 

HH and VV); and  

• Class Z9: low entropy surface scattering 

(e.g. Bragg scatter and rough surfaces), 

   This classification method is unaffected by training 

data sets since it is focused on physical scattering 

properties. The number of classes required, as well as 

the method's usability, are determined by the 

implementation. [41] suggests a small improvement in 

the class boundaries as well as a new understanding of 

the grades. 

   Different forms of surface scattering have been 

distinguished using the third variable of polarimetric 

anisotropy. In the H/A plane depiction of surface 

scattering given in Fig. 7, the shaded area is not 

possible. A diagonal coherency matrix with minor 

eigenvalues of 2 and 3, and three ranging from 0 to 

2, can be used to measure the line circumscribed by 

the relevant field. 

   According to [42], classification techniques can be 

categorized into three main categories: Per-pixel (or 

pixel-based) classification techniques (for instance, 

Maximum likelihood, Minimum distance, Isodata, K-

means), Sub-pixel classification techniques (for 

instance, Spectral mixture analysis), and per–field (or 

object-based) classification techniques. 

 Generally, in land cover classification, per-pixel 

classification techniques are the most widely used 

techniques, in spite of the existence of mixed pixels, 

which has been identified as a major issue affecting the 

accuracy of per-pixel classification results, particularly 

with medium and coarse spatial resolution data [43]. 

When using coarse spatial resolution data, sub-pixel 

classification approaches can be more effective than 

per-pixel approaches in dealing with the mixed pixel 

problem and providing an accurate estimation of the 

area of land cover. For fine spatial resolution data, per-

field (or object-based) classification approaches 

perform better than per-pixel classification approaches 
[44,45]. 

   Several automated methods for classifying Earth 

Observation (EO) data into featured categories have 

been established over the last two decades, including 

Maximum Likelihood (ML), Decision Trees, which take 

into account the necessary Probability Density 

Functions, and Neural Networks (NN) which have been 

shown to be the most beneficial. In this field, non-

parametric algorithms based on Support Vector 

Machine theory have recently been proven to be 

extremely efficient. We must acknowledge that, in the 

long run, ML (Maximum Likelihood) and NN (Neural 

Networks) methods have evolved from a pixel-based to 

a conceptual (i.e, pixel neighbourhood information) 

approach made by taking into account, Markov 

Random Fields (MRF), for example, a versatile 

technique for modeling spatial dependency [46]. 

 

3. The Results and Discussion 

   The results of an unsupervised identification of a 

scattering system using H, A, and are used to initialise 

the unsupervised segmentation scheme shown in Fig. 

8. This initialization creates eight reliable clusters that 

are connected to the physical scattering mechanism. 

The ML Wishart segmentation, the Unsupervised 

Wishart H-A-segmentation, has been enhanced by 

including anisotropy information during the 

segmentation process. In Fig. 8, anisotropy denotes the 

relative importance of secondary processes arising 

from a coherency matrix's expansibility. This 

polarimetric indicator is especially useful for identifying 

scattering processes with similar intermediate entropy 

values but different eigenvalue distributions. 
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Fig.4 Geological map of the study area (modified after EGSMA, 1990) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Geomorphological map of the study area, 2005 EGSMA, NARSS, UNDP, UNESCO 
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Fig.6 The H/α plane showing the model-based classes and their partitioning. A description of the classes 
(Z1-Z9) is given in the text, [37] 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Types of surface scattering in the Entropy/Anisotropy plane 

 

A high anisotropy value denotes two prevalent 

scattering mechanisms of equal probability and a small 

third mechanism, whereas a low anisotropy value 

denotes a prevalent first scattering mechanism and two 

non-negligible secondary mechanisms with equal 

significance.  Among the various methods studied, 

applying two consecutive segmentation procedures, as 

shown in Fig. 9, is the most effective way to incorporate 

anisotropy information into the classification algorithm.  

   First, using the algorithm described in the previous 

paragraph, the polarimetric data is segmented. After 

this process was completed, the 8 resulting clusters 

were divided into 16 by comparing the anisotropy of 

each pixel to a 0.5 threshold. 

 After that, the 16 segments are used to begin a new 

Wishart ML segmentation process. 

   The use of anisotropy in the clustering process helps us 

to split large segments into smaller clusters, allowing us to 

discriminate minor inequalities more precisely, as seen in 

Fig. 10, which shows the improved description of our 

data's classified scene. The agricultural canopy is 

constructed from the rest of the forest canopy. Buildings 

differ from other forms of urban scatterers, much as the 

Nile and other geological units differ from other surfaces. 

The Wishart H-A classification scheme divides pixels with 

similar statistical properties into segments, but it gives no 

information about the scattering mechanism that each 

cluster employs. 
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Fig. 8 Unsupervised Wishart H-α segmentation scheme 

 

 

 

Fig. 9 Unsupervised Wishart H-A-α segmentation scheme 
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Fig. 10 Wishart H-A-α segmentation 

 

 

   To investigate the accuracy of the classification 

technique, the integration of the output unsupervised 

classified image with Landsat 8 band ratio classification 

images Fig. 3, geological and geomorphological maps 

of the study area was performed Fig. 4 & 5. Fig. 2 

shows the flowchart of the methodology used in this 

study.  

   Today, the validation process, also known as 

accuracy assessment is an essential and integral part of 

most mapping projects, especially those involving 

remotely sensed data [47].  To obtain genuinely useful 

and efficient remotely sensed data, we must use an 

appropriate accuracy assessment technique. Where 

the accuracy is determined by comparing a map made 

from remotely sensed data to another map made from 

a different source (the reference one). It is determined 

to what extent the current map generated from 

remotely sensed data matches the reference map [48]. 

   The creation of the error matrix is the key element of 

the accuracy assessment, especially the quantitative 

accuracy assessment, where the error matrix is a 

square array of numbers arranged in rows and 

columns representing the number of sample units (i.e. 

pixel, clusters of pixels, or polygons) related to a 

specific category in comparison to the actual category 

as stated by the reference data [49]. Where the ERDAS 

Imagine "Accuracy Assessment" module was used to 

select the sample points randomly, which recorded the  

 image class for each point in this sample automatically, 

we used the viewer to determine the reference class 

for each point. At the moment we entered the 

reference class for each sample point, we used Imagine 

to construct the error matrix and derive some accuracy 

estimates. 

   To assess inter-rater reliability, the kappa statistic 

was used. The rater reliability is important because it 

indicates the degree to which the classification or data 

obtained in the study are correct [50], The scale of 

Kappa value interpretation is as follows. 

   Finally, as we see, a final unsupervised classification 

scheme with 5 classes was performed. The 

unsupervised classification map was converted to 

supervised classification using the high-resolution 

Landsat 8 classified images and the published 

geological and geomorphological maps, as well as field 

investigation, as discussed in the methodology. 

   These five classes are categorized as follows; Urban 

areas: which covers 22% of the study area and 

represented in red in the final map, Agriculture canopy: 

which is represented in green, covers 53% of the study 

area, The Nile: there is about 73 km of the Nile passing 

through the study area and it is the responsible for the 

presence of the agricultural and the geological nature 

(with other effects) of the study area, And two 

geological Units, Te (Tertiary, which represents sands 

and sandstones with clay and marl), and Tp (Tertiary 
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Pliocene, which represents sands, sandstone and 

gravels), Fig. 11. 

   In addition, the classification accuracy assessment 

(CAA) was performed for the obtained results using 

327    field    reference   points   with   Landsat  7 image 

 

Fig. 11 The resultant classified image 

 (with the same date that the SAR data acquired) Fig. 

12 & 13. The CAA has shown the classification 

accuracy to be around 81.82% with Kappa coefficient 

of 0.8344, which is acceptable according to              

Table 1. 

 

Fig. 12 The accuracy points on the classified image 

 

 

 

4. Conclusion 

   Microwave remote sensing data has recently become 

popular for land cover/land use classification.  This study 

shows how useful the full-polarimetric ALOS-PALSAR data 

in mapping the land use / land cover and geology. This 

paper includes data collection, data interpretation, and a 

validation tool, as well as methodology and preliminary 

findings. In the land use, land cover, and geology 

mapping analysis, the ALOS-PALSAR image was exposed 

to the supervised classification technique. The nature of 

the region influenced the selection of the PALSAR data 

training area. In previous research, the best supervise 

classifier was selected because it had the highest overall 

accuracy and kappa coefficient. 

 using full-polarimetric ALOS/PALSAR data, the land 

cover and geology of Greater Cairo, Egypt, can be 

accurately mapped without suffering and wasting time, 

effort, or facing hazards. 

   The polarimetric microwave ALOS PALSAR data (Quad 

mode) is an effective method for classifying various land 

features from space. In this analysis, the Wishart H-A 

segmentation classifier with quad mode polarisation 

microwave and ALOS/PALSAR data provided the highest 

level of accuracy.  Finally, the findings show that 

integrating the classified targets based on radar scattering 

response together with their optical reflectance 

information is effective for discriminating and classifying 

the land cover and geological units. 
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Fig. 13 Landsat 7 image with the accuracy control points 

 

Table 1 Kappa value interpretation [23] 

 

 

 

 

 

 

 

 

 

 

Value Category 

< 0 No agreement 

0    –  0.20 Slight 

0.21 –  0.40 Fair 

0.41 –  0.60 Moderate 

0.61 –  0.80 Substantial 

0.81 –  1.0 Perfect 

5. REFRENCES 

1. Al-Tahir, R., Saeed, I. and Mahabir, R. 

(2014). Application of remote sensing and 

GIS technologies in flood risk 

management. Flooding and climate change: 

sectorial impacts and adaptation strategies 

for the Caribbean region, 137 - 150. 

  

2. Henderson, F. M., Chasan, R., Portolese, J. 

and Hart Jr, T. (2002). Evaluation of SAR-

optical imagery synthesis techniques in a           

complex coastal ecosystem. Photogrammetric 

Engineering and Remote Sensing,             

68(8): 839 - 846. 

 



 89-75):2/Egy. J. Pure & Appl. Sci. 2021; 59(et al R. R. Mohammad   

 

 87 

 

 

3. Berens, P. (2006). Introduction to synthetic 

aperture radar (SAR). FGAN-FHR RESEARCH 

INST FOR HIGH FREQUENCY PHYSICS AND 

RADAR TECHNIQUES WACHTBERG 

(GERMANY). 

4. Sultan, M., Arvidson, R. E. and Sturchio, N. C. 

(1986). Mapping of serpentinites in the Eastern 

Desert of Egypt by using Landsat thematic 

mapper data. Geology, 14(12): 995 - 999. 

5. Abrams, M. J., Rothery, D. A. and Pontual, A. 

(1988). Mapping in the Oman ophiolite using 

enhanced Landsat Thematic Mapper 

images. Tectonophysics, 151(1-4): 387 - 401. 

6. Jutz, S. L. and Chorowicz, J. (1993). Geological 

mapping and detection of oblique extensional 

structures in the Kenyan Rift Valley with a 

SPOT/Landsat-TM datamerge. International 

Journal of Remote Sensing, 14(9): 1677 - 1688. 

7. Sabins, F. F. (1999). Remote sensing for mineral 

exploration. Ore geology reviews, 14(3-4): 157 - 

183. 

8. Singhroy, V. H., Loehr, J. E. and Correa, A. C. 

(2000). Landslide risk assessment with high 

spatial resolution remote sensing satellite data. 

In IGARSS 2000. IEEE 2000 International 

Geoscience and Remote Sensing Symposium. 

Taking the Pulse of the Planet: The Role of 

Remote Sensing in Managing the Environment. 

Proceedings, 6: 2501 - 2503. 

9. Kruse, F. A., Boardman, J. W. and Huntington, J. 

F. (2003). Transactions on Geoscience & Remote 

Sensing, 41(6), 1388-1400.  

10. Chipman, J. W., Lillesand, T. M., Schmaltz, J. E., 

Leale, J. E. and Nordheim, M. J. (2004). Mapping 

lake water clarity with Landsat images in 

Wisconsin, USA. Canadian journal of remote 

sensing, 30(1): 1 - 7. 

11. Debba, P., Van Ruitenbeek, F. J. A., Van Der 

Meer, F. D., Carranza, E. J. M. and Stein, A. 

(2005). Optimal field sampling for targeting 

minerals using hyperspectral data. Remote 

Sensing of Environment, 99(4): 373 - 386. 

12. Geiß, C., Taubenböck, H., Wurm, M., Esch, T., 

Nast, M., Schillings, C. and Blaschke, T. (2011). 

Remote sensing-based characterization of 

settlement structures for assessing local 

potential of district heat. Remote Sensing, 3(7): 

1447 - 1471. 

 13. Amer, R., Kusky, T. and El Mezayen, A. (2012). 

Remote sensing detection of gold related 

alteration zones in Um Rus area, Central Eastern 

Desert of Egypt. Advances in Space 

Research, 49(1): 121 - 134. 

14. Markandeyulu, A., Patra, I., Raju, B. V. S. N., 

Chaturvedi, A. K. and Parihar, P. S. (2012). 

Interpretation of aero-magnetic data and 

satellite imagery to delineate structure—a case 

study for uranium exploration from Gwalior 

Basin, India. Journal of the Geological Society of 

India, 80(3): 382 - 392. 

15. Alanazi, H. A. and Ghrefat, H. A. (2013). Spectral 

analysis of multispectral Landsat 7 ETM+ and 

ASTER data for mapping land cover at Qurayah 

Sabkha, Northern Saudi Arabia. Journal of the 

Indian Society of Remote Sensing, 41(4): 833 - 

844. 

16. Soulaimani, A., Admou, H., Youbi, N., Hafid, A. 

and Hefferan, K. P. (2014). Application of ASTER 

remote sensing data to geological mapping of 

basement domains in arid regions: a case study 

from the Central Anti-Atlas, Iguerda inlier, 

Morocco. Arabian Journal of Geosciences, 7(6): 

2407 - 2422. 

17. Landis, J. R. and Koch, G. G. (1977). The 

measurement of observer agreement for 

categorical data. biometrics, 159 - 174. 

18. Kruse, F. A., Kim, A. M., Runyon, S. C., Carlisle, S. 

C., Clasen, C. C., Esterline, C. H. and Olsen, R. C. 

(2014). Multispectral, hyperspectral, and LiDAR 

remote sensing and geographic information 

fusion for improved earthquake response. 

In Algorithms and Technologies for Multispectral, 

Hyperspectral, and Ultraspectral Imagery. 

International Society for Optics and Photonics, 

9088: 90880K 

19. Madani, A. and Niyazi, B. (2015). Groundwater 

potential mapping using remote sensing 

techniques and weights of evidence GIS model: a 

case study from Wadi Yalamlam basin, Makkah 

Province, Western Saudi Arabia. Environmental 

Earth Sciences, 74(6): 5129 - 5142. 

20. Gabr, S. S., Hassan, S. M. and Sadek, M. F. (2015). 

Prospecting for new gold-bearing alteration zones 

at El-Hoteib area, South Eastern Desert, Egypt, 

using remote sensing data analysis. Ore Geology 

Reviews, 71: 1-13. 

 



 89-75):2Egy. J. Pure & Appl. Sci. 2021; 59(/et al R. R. Mohammad   

 

88  

 

 

 

 

 

 

21. Sonbul, A. R., El-Shafei, M. K. and Bishta, A. Z. 

(2016). Using remote sensing techniques and 

field-based structural analysis to explore new 

gold and associated mineral sites around Al-

Hajar mine, Asir terrane, Arabian 

Shield. Journal of African Earth Sciences, 117: 

285 - 302. 

22. Vural, A., Corumluoglu, Ö. And Asri, I. (2017). 

Remote sensing technique for capturing and 

exploration of mineral deposit sites in 

Gumushane metallogenic province, NE 

Turkey. Journal of the Geological Society of 

India, 90(5): 628 - 633. 

23. Elachi, C. (1988). Spaceborne radar remote 

sensing: applications and techniques. New 

York. 

24. Saepuloh, A., Koike, K., Urai, M. and 

Sumantyo, J. T. S. (2015). Identifying surface 

materials on an active volcano by deriving 

dielectric permittivity from polarimetric SAR 

data. IEEE Geoscience and Remote Sensing 

Letters, 12(8): 1620 - 1624. 

25. Feng, G., Jónsson, S. and Klinger, Y. (2017). 

Which fault segments ruptured in the 2008 

Wenchuan earthquake and which did not? 

New evidence from near‐fault 3D surface 

displacements derived from SAR image 

offsets. Bulletin of the Seismological Society of 

America, 107(3): 1185 - 1200. 

26. Tseng, K. H., Kuo, C. Y., Lin, T. H., Huang, Z. C., 

Lin, Y. C., Liao, W. H. and Chen, C. F. (2017). 

Reconstruction of time-varying tidal flat 

topography using optical remote sensing 

imageries. ISPRS journal of photogrammetry 

and remote sensing, 131: 92 - 103. 

27. Ng, A. H. M., Ge, L., Du, Z., Wang, S. and Ma, 

C. (2017). Satellite radar interferometry for 

monitoring subsidence induced by longwall 

mining activity using Radarsat-2, Sentinel-1 

and ALOS-2 data. International journal of 

applied earth observation and 

geoinformation, 61: 92 - 103. 

 28. Sun, Y., Jiang, L., Liu, L., Sun, Q., Wang, H. and 

Hsu, H. (2017). Mapping glacier elevations and 

their changes in the western Qilian Mountains, 

northern Tibetan Plateau, by bistatic 

InSAR. IEEE Journal of Selected Topics in 

Applied Earth Observations and Remote 

Sensing, 11(1): 68 – 78. 

29. Béjar-Pizarro, M., Carrizo, D., Socquet, A., 

Armijo, R., Barrientos, S., Bondoux, F. and 

Vigny, C. (2010). Asperities and barriers on the 

seismogenic zone in North Chile: state-of-the-

art after the 2007 M w 7.7 Tocopilla 

earthquake inferred by GPS and InSAR 

data. Geophysical Journal 

International, 183(1):  390 - 406. 

30. Salvi, S., Tolomei, C., Boncori, J. P. M., Pezzo, 

G., Atzori, S., Antonioli, A. and Coletta, A. 

(2012). Activation of the SIGRIS monitoring 

system for ground deformation mapping 

during the Emilia 2012 seismic sequence, using 

COSMO-SkyMed InSAR data. Annals of 

Geophysics, 55(4): 970 - 976. 

31. Sun, L. and Muller, J. P. (2014). Evaluation of 

the Use of Sub-Pixel Offset Tracking Method to 

Monitor Landslides in Densely Vegetated 

Terrain in the Three Gorges Region, 

China. Dragon 3Mid Term Results, 724: 112. 

32. Wu, C., Li, X., Chen, W. and Li, X. (2020). A 

review of geological applications of high-

spatial-resolution remote sensing data. Journal 

of Circuits, Systems and Computers, 29(06): 

2030006. 

33. Moustafa, A. and Abd-Allah, A. M. (1991). 

Structural setting of the central part of the 

Cairo-Suez district. Earth Sci, 5: 133 - 145. 

34. Moustafa, A. R., Yehia, M. A. and Abdel 

Tawab, S. (1985). Structural setting of the area 

east of Cairo, Maadi and Helwan. Middle East 

Res. Centre, Ain Shams Univ., Sci. Res. 

Series, 5: 40 - 64. 

35. Said, R. (1962). The Geology of Egypt. 

Amsterdam, Elsevier.  

 



 89-75):2/Egy. J. Pure & Appl. Sci. 2021; 59(et al R. R. Mohammad   

 

 89 

 

 

 

36. Abdeen, M. M., Gaber, A., Shokr, M. and El-

Saadawy, O. A. (2018). Minimizing labeling 

ambiguity during classification process of the 

geological units covering the central part of 

the Suez Canal Corridor, Egypt using their 

radar scattering response. The Egyptian 

Journal of Remote Sensing and Space 

Science, 21: S55 - S66. 

37. Lee, J. S. and Pottier, E. (2009). Polarimetric 

radar imaging: from basics to applications. 

Optical Science and Engineering. 

38. Congalton, R. G. (2001). Accuracy 

assessment and validation of remotely 

sensed and other spatial 

information. International Journal of 

Wildland Fire, 10(4): 321 - 328. 

39. Cloude, S. R. and Pottier, E. (1996). A review 

of target decomposition theorems in radar 

polarimetry. IEEE transactions on geoscience 

and remote sensing, 34(2): 498 - 518. 

40. Cloude, S. R. and Pottier, E. (1997). An 

entropy based classification scheme for land 

applications of polarimetric SAR. IEEE 

transactions on geoscience and remote 

sensing, 35(1): 68 - 78. 

41. Cloude, S. R. and Papathanassiou, K. P. 

(1998). Polarimetric SAR interferometry. IEEE 

Transactions on geoscience and remote 

sensing, 36(5): 1551 - 1565. 

42. Cloude, S. R., Pottier, E. and Boerner, W. M. 

(2002). Unsupervised image classification 

using the entropy/alpha/anisotropy method 

in radar polarimetry. In NASA-JPL, AIRSAR-02 

Workshop, 44(1334): 04 - 06. 

 

 43. Lu, D. and Weng, Q. (2007). A survey of image 

classification methods and techniques for 

improving classification performance. International 

Journal of Remote Sensing, 28(5): 823-870. 

44. Cracknell, P. (1998). Synergy in remote sensing - 

what’ s in a pixel ? International Journal of Remote 

Sensing, 19(11): 2025  –2047. 

45. Benz, U. C., Hofmann, P., Willhauck, G., 

Lingenfelder, I. and Heynen, M. (2004). 

Multiresolution, object-oriented fuzzy analysis of 

remote sensing data for GIS-ready information. 

ISPRS Journal of Photogrammetry and Remote 

Sensing, 58(3-4): 239 – 258. 

46. Wang, L., Sousa, W. P., Gong, P. and Biging, G. S. 

(2004). Comparison of IKONOS and QuickBird 

images for mapping mangrove species on the 

Caribbean coast of Panama. Remote Sensing of 

Environment, 91(3-4): 432 – 440. 

47. Moreira, A., Prats-Iraola, P., Younis, M., Krieger, 

G., Hajnsek, I. and Papathanassiou, K. P. (2013). A 

tutorial on synthetic aperture radar. IEEE 

Geoscience and remote sensing magazine, 1(1): 6 

- 43. 

48. Campbell, J. B. and Wynne, R. H. 

(2011). Introduction to remote sensing. Guilford 

Press. 

49. Senseman, G. M., Bagley, C. F. and Tweddale, S. 

A. (1995). Accuracy Assessment of the Discrete 

Classification of Remotely-Sensed Digital Data for 

Landcover Mapping. CONSTRUCTION 

ENGINEERING RESEARCH LAB (ARMY) 

CHAMPAIGN IL. 

50. Chen, Y. S. (2019). Interpretation of Kappa Values: 

Evaluate the agreement level with condition. 

 

 


