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The peculiarities of the Rayleigh problem (RP) governing equations of a rarefied 

gaseous plasma (RGP) are analyzed. They were proven to conform to the entropic 

performance for the RGP system using the moment method, separation of variables, 

associated with traveling-wave techniques in irreversible thermodynamics (IT) 

approach. Maxwell’s equations and the Boltzmann equation (BE) of the Bhatnagar- 

Gross- Krook (BGK) type were solved. The BE considerable advantage is that it allows 

us to analyze the depth performance of the equilibrium electrons' velocity 

distribution function (EVDF) and the perturbed EVDF and their implementation to 

determine how far the system is from the equilibrium state (ES). As a result, the 

contrast between the equilibrium EVDF and the perturbed EVDF was conceptually 

elucidated at various periods. This significant benefit enables us to consider our 

model's non-equilibrium IT properties. For this purpose, the derived EVDF should be 

employed in entropy, production, and other critical thermodynamic variables. After 

analyzing the results, we discovered that H-theorem, thermodynamic principles, and 

Le Chatelier’s law were consistent with our model. The Gibbs rule was used to 

express how the various influences of the forces acting on the system's internal 

energy modification (IEM) are expressed. The findings showed that the proposed 

model could accurately capture the performance. The suggested type could 

accurately predict RGP helium and argon gases performance in the upper 

atmosphere's ionized belts. 3D-Graphics representing the physical parameters were 

generated using analysis of variance calculations, and the results are thoroughly 

presented. The importance of this research stemmed from its broad array of 

utilization in micro-electro-mechanical systems (MEMS), physics, electrical 

engineering, and nano-electro-mechanical systems (NEMS) technologies in a variety 

of commercial and industrial utilization. 
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1. Introduction  
   The BE has several uses in MEMS & NEMS 

technology. One of the most critical considerations 

driving the use of the BE in MEMS & NEMS 

implementations is the knowledge that: Since their 

micron-scale   size   is   generally   comparable   to   the 

  

molecule mean free path under normal operating 

conditions. Thus, the Knudsen flow numbers in MEMS 

& NEMS are generally far from the continuum 

regimes. Microflow is a term used to describe flow on 

a micron scale. The characteristic lengths of the flow 

gradient   in   microflows   are   usually     modest    and 
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correspond to the molecules' mean free path. Often 

these MEMS & NEMS typical lengths will be in the 

micron order or less, resulting in a Knudsen number 

between 0.001 to 10. Resulting in fluid flows in the slip 

flow and transition flow conditions like most MEMS & 

NEMS technology. Microflows in these regimes have 

characteristics that differ from typical flows with long 

characteristic lengths. The Navier-Stokes and other 

traditional continuum models cannot characterize and 

forecast micro and nano-flows. On the other hand, 

microflows impact the effectiveness of MEMS & NEMS, 

such as micro pressure sensors, micro pumps, and 

valves [1]. 

   The problem of describing the motion of plasma was 

developed as a critical one. On the other hand, kinetic 

forms of the BE and macroscopic templates such as 

hydrodynamic type are extensively employed in 

plasma. While hydrodynamic systems are incredibly 

realistic to represent many observable occurrences, a 

fluid treatment is insufficient for some, like the RGP. A 

kinetic type must be applied to get out from the 

inadequacy of the hydrodynamic types in the RGP 

system. Nonetheless, kinetic type numerical 

simulations are prohibitively expensive in CPU time 

and memory capacity. To precisely explain the complex 

transfer phenomena in RGP streams circumstances, 

particle-based RGP dynamics should be used [1-3]. The 

transport field becomes complicated because non-

equilibrium effects occur in the RGP flows [1]. 

Numerical solutions of the BE, which might be 

problematic, can characterize these non-equilibrium 

effects in kinetic gas theory. It is feasible to derive the 

equivalent macroscopic transport equations from a 

microscopic equation, such as the BE. The BE's classical 

approaches for deducing hydrodynamic-like equations 

are the Chapman-Enskog [4-6] and Grad's moment 

methods [7-9].  In laboratory experiments 

and aerodynamics, the performance of the RGP in the 

presence of an infinite flat plate unexpectedly shifted 

in its plane, the RP, is of enormous interest. Particles 

collisions with rigid surfaces and particle binary 

collisions are predicted due to RGP rarefaction 

discontinuities in the surface's macroscopic 

parameters. Shedlovskii, El-Sakka, et al., Khater, et al. 
[9-11], among several others, investigated the RP for a 

great RGP using the collisionless BE, as well as the RGP 

's dynamical and electromagnetic field (EMF) 

characteristics.   This   investigation   aims  to apply the  

 precise traveling-wave techniques [12-16] to solve the 

problem of the RP issue to estimate shear stress, 

velocity, viscosity coefficient, and induced magnetic 

and electric fields. IT performance of diamagnetic RGP 

must be studied by applying estimated EVDF to 

evaluate entropic predictions performance and 

associated IT functions. 

 

2. Geometry, Physical, and Mathematical 

Formulation    

   Suppose that the top half of space (𝑦 ≥ 0), confined 

by an unlimited flat plate (y = 0), is complete with an 

RGP of electrons and ions Fig. 1. Because the ratio 

among electron and ion masses in ionized RGP is too 

slight (
𝑚𝑒

𝑚𝑖
≪ 1), the ions will be treated as a motionless 

neutralizing background. Firstly, the RGP is incomplete 

ES and the wall rest. The plate then begins to move 

abruptly in its plane, with velocity𝑈0𝑒−𝛼𝑡 is along the x-

axis (𝑎𝑠 𝑈0𝑎nd 𝛼 are constants). The temperature of 

the entire system (electrons + ions + surface) is 

maintained at a constant temperature. The 

nomenclature defines all physical parameters. 

Where �⃗� operating upon every electron be calculated 

as follows [17-18]:      

  �⃗� = −𝑒�⃗⃗� +
−𝑒

𝑐𝑜
(𝑐 ∧ �⃗⃗�). By assuming 

 (1)  �⃗⃗� ≡ ( 𝑉𝑥 , 0,0), 𝐽 ≡ (𝑞𝑛𝑉𝑥 , 0,0), �⃗⃗� ≡ (𝐸𝑥 , 0,0) and 

�⃗⃗� ≡ (0,0, 𝐵𝑧). 

 Ex, Bz, Jx, and Vx, are considered (y, t) functions. 

Equations of Maxwell's are satisfied by this selection. 

In the RGP, the EVDF is 𝑓(𝑦, 𝑐, 𝑡 ), 𝑡ℎ𝑎𝑡 can be 

calculated from the BE [17-19] which can be composed 

in the BGK type [20-22] as:  

(2)  
𝜕𝑓

𝜕𝑡
+ 𝑐 ⋅

𝜕𝑓

𝜕𝑟
+

�⃗�

𝑚
⋅

𝜕𝑓

𝜕𝑐
=

1

𝜏
(𝑓0 − 𝑓),  where 𝑓0 =

𝑛(2𝜋𝑅𝑇)−
3

2 𝑒𝑥𝑝 (
−(𝑐−�⃗⃗⃗�)2

2𝑅𝑇
)  

By substitutions from (1) into (2), we get: 

(3)  
𝜕𝑓

𝜕𝑡
+ 𝑐𝑦

𝜕𝑓

𝜕𝑦
−

𝑒𝐵𝑧

𝑚𝑐0
(𝑐𝑦

𝜕𝑓

𝜕𝑐𝑥
− 𝑐𝑥

𝜕𝑓

𝜕𝑐𝑦
) +

𝑒𝐸𝑥

𝑚

𝜕𝑓

𝜕𝑐𝑥
=

1

𝜏
(𝑓0 − 𝑓). 

Considering the solution of Eq. (4) as in [7]: 

4)                          𝑓 =

{
𝑓1 = 𝑛(2𝜋𝑅𝑇)−

3

2 (1 +
𝑐𝑥𝑉𝑥1

𝑅𝑇
) 𝑒𝑥𝑝 (

−𝑐2

2𝑅𝑇
)     for  c𝑦 < 0 ↑

𝑓2 = 𝑛(2𝜋𝑅𝑇)−
3

2 (1 +
𝑐𝑥𝑉𝑥2

𝑅𝑇
) 𝑒𝑥𝑝 (

−𝑐2

2𝑅𝑇
)     for   c𝑦 > 0 ↓

 

 

where  𝑉𝑥1and 𝑉𝑥2 are two undetermined functions of 

variables t and y. 

 



 74-36):2/Egy. J. Pure & Appl. Sci. 2021; 59(and Shahein Abdel Wahid   

 

 65 

 

 

 

Appling Gard's moment method [1,2] multiplying Eq. (4) 

by 𝑄𝑖(𝑐) and integrating overall values of 𝑐, the 

kinetic transfer equations are obtained as: 

(5)  
𝜕

𝜕𝑡
∫ 𝑄𝑖𝑓𝑑 �̱� +

𝜕

𝜕𝑦
∫ 𝑐𝑦𝑄𝑖𝑓𝑑 �̱� +

𝑒𝐸𝑥

𝑚
∫ 𝑓

𝜕𝑄𝑖

𝜕𝑐𝑥
𝑑 �̱� + 

           +
𝑞𝐵𝑧

𝑚𝑐0
∫(𝑐𝑥

𝜕𝑄𝑖

𝜕𝑐𝑦
− 𝑐𝑦

𝜕𝑄𝑖

𝜕𝑐𝑥
)𝑑�̱� =

1

𝜏
∫(𝑓0 − 𝑓)𝑄𝑗𝑑 �̱�. 

  The integrals over velocity are computed using the 

formula [1,3],  

(6)   ∫ 𝑄𝑖(𝑐)𝑓 𝑑�̱� =

∫ ∫ ∫ 𝑄𝑖𝑓1𝑑�̱� +
∞

−∞

0

−∞

∞

−∞
∫ ∫ ∫ 𝑄𝑖𝑓2𝑑�̱�

∞

−∞

−∞

0

∞

−∞
 , where 

𝑄𝑖 = 𝑄𝑖(𝑐), 𝑖 = 1,2  and 𝑑�̱� = 𝑑𝑐𝑥𝑑𝑐𝑦𝑑𝑐𝑧 

where 𝑐𝑥 , 𝑐𝑦  and 𝑐𝑧 correspondingly, three 

components of the electron speed along x, y, and z 

axes. Moreover, the component of both 𝐸 and 𝐵 can 

be calculated from Maxwell's equations: 

(7)  
𝜕𝐸𝑥

𝜕𝑦
−

1

𝑐0

𝜕𝐵𝑧

𝜕𝑡
= 0 

(8)  
𝜕𝐵𝑧

𝜕𝑦
−

1

𝑐0

𝜕𝐸𝑥

𝜕𝑡
−

4𝜋𝑒𝑛

𝑐0
𝑉𝑥 = 0 

where   𝑛 = ∫ 𝑓𝑑�̱� ,   nV𝑥 = ∫ 𝑐𝑥𝑓𝑑�̱�, with the 

boundary and initial conditions 

(9)   
𝐸𝑥(𝑦, 0) = 𝐵𝑧(𝑦, 0) = 0 ,
𝐸𝑥(𝑦, 𝑡) and 𝐵𝑧(𝑦, 𝑡)  are finite as y → ∞.

} 

The dimensionless variables are introduced as, 

10)   

𝑡 = 𝑡′𝜏 , 𝑦 =
𝑦′𝜏

√2𝜋
𝑉𝑇ℎ , 𝑉𝑥 = 𝑉𝑥

′𝑉𝑇ℎ  , 𝜏𝑥𝑦 = 𝜏𝑥𝑦
′ 𝑉𝑇ℎ , 𝑀 =

𝑐

𝑉𝑇ℎ
, 𝑀𝑝 =

𝑈0

𝑉𝑇ℎ
 

𝐵𝑧 = 𝐵𝑧
′ 𝑚𝑐0 𝑉𝑇ℎ

𝑒𝜏
(

√2𝜋

𝑉𝑇ℎ
), 𝐸𝑥

′ = 𝐸𝑥
′ 𝑚𝑉𝑇ℎ

𝑒𝜏
  , 𝜌 = 𝑛𝑚𝑒 , 𝑉𝑇ℎ = √

2𝐾𝑇0

𝑚𝑒
.

} 

 

For 𝑀2 ≪ 1 (small Mach number), we could consider 

that changes in temperature and density are 

negligible, i.e., 𝑇 = 1 + 𝑂(𝑀2) and  𝑛 = 1 + 𝑂(𝑀2). 

Let  

 (11)    𝑉𝑥 =
1

2
(𝑉𝑥1 + 𝑉𝑥2),  𝜏𝑥𝑦 =

𝑃𝑥𝑦

𝜌𝑈0√𝑅𝑇𝑒/2𝜋
= (𝑉𝑥2 −

𝑉𝑥1). 

By applying the non-dimension variable Eq. (5) for 

𝑄1 = 𝑐𝑥 and 𝑄2 = 𝑐𝑥𝑐𝑦becomes 

(12)  
𝜕𝑉𝑥

′

𝜕𝑡′ +
𝜕𝜏𝑥𝑦

′

𝜕𝑦′ − 𝐸𝑥
′ = 0, 

(13) 
𝜕𝜏𝑥𝑦

′

𝜕𝑡′ + 2𝜋
𝜕𝑉𝑥

′

𝜕𝑦′ + 𝜏𝑥𝑦
′ = 0, 

with the boundary and initial conditions  

(14)     

𝑉𝑥
′(𝑦′, 0) = 𝜏𝑥𝑦

′ (𝑦′, 0) = 0,                      

2𝑉𝑥
′(0, 𝑡′) + 𝜏𝑥𝑦

′ (0, 𝑡′) = 2𝑀𝑝𝑒−𝛼1𝑡′
            

𝑉𝑥
′ and 𝜏𝑥𝑦

′  are finite as y → ∞, 𝛼1 = 𝛼𝜏.

} 

 In equations (7)-(9) and (12)- (14), we remove the dash 

over the dimensionless variables for brevity's purpose. 

Thus, we have the following equations system 

(disregard current of displacement) [23]: 

(15)  
𝜕𝑉𝑥

𝜕𝑡
+

𝜕𝜏𝑥𝑦

𝜕𝑦
− 𝐸𝑥 = 0, 

(16)   
𝜕𝜏𝑥𝑦

𝜕𝑡
+ 2𝜋

𝜕𝑉𝑥

𝜕𝑦
+ 𝜏𝑥𝑦 = 0, 

(17)   
𝜕𝐸𝑥

𝜕𝑦
−

𝜕𝐵𝑧

𝜕𝑡
= 0, 

 (18)   
𝜕𝐵𝑧

𝜕𝑦
− 𝛼0𝑉𝑥 = 0,       where  𝛼0 =

𝑉𝑇ℎ
2𝜏2𝑒2𝑛𝑒

𝑚𝑒𝑐0
2 , 

with the boundary and initial conditions  

(19)  

𝑉𝑥(𝑦, 0) = 𝜏𝑥𝑦(𝑦, 0) = 𝐸𝑥(𝑦, 0) = 𝐵𝑧(𝑦, 0) = 0 ,

2𝑉𝑥(0, 𝑡) + 𝜏𝑥𝑦(0, 𝑡) = 2𝑀𝑝𝑒−𝛼1𝑡, for     𝑡 > 0   ;      

𝑉𝑥 , 𝜏𝑥𝑦, 𝐸𝑥 and 𝐵𝑧  are finite as y → ∞.            

} 

We can reduce our basic Eqs. (15-18), to one equation: 

 (20) 
𝜕4𝑉𝑥(𝑦,𝑡)

𝜕𝑡2𝜕𝑦2 − 𝛼
𝜕2𝑉𝑥(𝑦,𝑡)

𝜕𝑡2 −
𝜕3𝑉𝑥(𝑦,𝑡)

𝜕𝑡𝜕𝑦2 − 𝛼
𝜕𝑉𝑥(𝑦,𝑡)

𝜕𝑡
−

2𝜋
𝜕4𝑉𝑥(𝑦,𝑡)

𝜕𝑡4 = 0. 

 

3. Solution of the Problem 

   We will apply traveling-wave techniques [12-16] since 

the traveling wave variable  

(21) 𝜉 = −𝑦 − 𝑀𝑡 , we change the partial derivatives to 

ordinary derivatives, where   

(22)  
𝜕

𝜕𝑡
= −𝑀

𝑑

𝑑𝜉
 , 

𝜕

𝜕𝑦
= −

𝑑

𝑑𝜉
and

𝜕𝑎

𝜕𝑡𝑎 = (−1)𝑎𝑀𝑎 𝑑𝑎

𝑑𝜉𝑎  , 

𝜕𝑎

𝜕𝑦𝑎 = (−1)𝑛 𝑑𝑎

𝑑𝜉𝑎 as a is a +ve integer.  

Substituting Eqs. (21-22) into Eq. (20), we have: 

(23) (𝑀2 − 2𝜋)
𝑑4𝑉𝑥(𝜉)

𝑑𝜉4 + 𝑀
𝑑3𝑉𝑥(𝜉)

𝑑𝜉3 − 𝛼𝑀2 𝑑2𝑉𝑥(𝜉)

𝑑𝜉2 +

𝛼𝑀
𝑑𝑉𝑥(𝜉)

𝑑𝜉
= 0 

Integrating Eq. (23) concerning 𝜉 once, we obtain: 

(24) (𝑀2 − 2𝜋)
𝑑3𝑉𝑥(𝜉)

𝑑𝜉3 + 𝑀
𝑑2𝑉𝑥(𝜉)

𝑑𝜉2 − 𝛼𝑀2 𝑑𝑉𝑥(𝜉)

𝑑𝜉
+

𝛼𝑀𝑉𝑥(𝜉) = 𝐶1, 

where C1 is the integration constant, the boundary and 

initial conditions become: 

(25 − 𝐴)   𝐸𝑥(𝜉 = 0) = 𝐵𝑧(𝜉 = 0) = 𝜏𝑥𝑦(𝜉 = 0) = 0 ,

(25 − 𝐵)  2𝑉𝑥(𝜉 = −𝑀) + 𝜏𝑥𝑦(𝜉 = −𝑀) = 2𝑀𝑝𝑒−𝛼1

(25 − 𝐶)       𝑉𝑥 , 𝜏𝑥𝑦, 𝐸𝑥 and 𝐵𝑧 are finite as 𝜉 → −∞.

} 

By solving the ordinary differential Eq. (24), we obtain 

the form of the general solution: 

(26) 𝑉𝑥(𝜉) = 𝐶2𝑒𝜃1𝜉 + 𝐶3𝑒𝜃2𝜉 + 𝐶4𝑒𝜃3𝜉 +
𝐶1

𝑀𝛼
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Fig. 1 Schematic representation of our problem. The rigid flat plate located at 𝑦 = 0 and the plasma components 
occupied the half-space 𝑦 > 0 

 

 

where 𝐶2, 𝐶3 and 𝐶4  are integrating constants 

calculated from the boundary and initial conditions  

𝜃1, 𝜃2 and 𝜃3 are the three roots of the algebraic 

auxiliary equation: (𝑀2 − 2𝜋)𝜃3 + 𝑀𝜃2 − 𝛼𝑀2𝜃 +

𝛼𝑀 = 0.  

Substituting from Eqs. (21-22) into Eqs. (15-18) we 

obtain: 

(27)  −𝑀
𝜕𝑉𝑥

𝜕𝜉
−

𝜕𝜏𝑥𝑦

𝜕𝜉
− 𝐸𝑥 = 0, 

(28)   −𝑀
𝜕𝜏𝑥𝑦

𝜕𝜉
− 2𝜋

𝜕𝑉𝑥

𝜕𝜉
+ 𝜏𝑥𝑦 = 0, 

(29)   −
𝜕𝐸𝑥

𝜕𝜉
+ 𝑀

𝜕𝐵𝑧

𝜕𝜉
= 0, 

 (30)   −
𝜕𝐵𝑧

𝜕𝜉
− 𝛼0𝑉𝑥 = 0, 

Integrating Eq. (30) concerning 𝜉 , we get: 

(31)   𝐵𝑧(𝜉) = −𝛼0 ∫ 𝑉𝑥(𝜉)𝑑 𝜉 

Substituting from Eq. (26) into Eq. (31), we obtain: 

(32)  𝐵𝑧(𝜉) = −𝛼0 (
𝐶2

𝜃1
𝑒𝜃1𝜉 +

𝐶3

𝜃2
𝑒𝜃2𝜉 +

𝐶4

𝜃3
𝑒𝜃3𝜉 +

𝐶1𝜉

𝑀2𝛼
) + 𝐶5 

The condition (25-C) implies that 𝐶1 = zero, thus  

(33)  𝐵𝑧(𝜉) = −𝛼0 (
𝐶2

𝜃1
𝑒𝜃1𝜉 +

𝐶3

𝜃2
𝑒𝜃2𝜉 +

𝐶4

𝜃3
𝑒𝜃3𝜉) + 𝐶5. 

Integrating Eq. (29) concerning 𝜉 then we get: 

(34)  𝐸𝑥(𝜉) = 𝑀𝐵𝑧(𝜉) + 𝐶6. 

Substituting from Eqs. (33) into Eq. (34), we obtain: 

(35)  𝐸𝑥(𝜉) = −𝛼0𝑀 (
𝐶2

𝜃1
𝑒𝜃1𝜉 +

𝐶3

𝜃2
𝑒𝜃2𝜉 +

𝐶4

𝜃3
𝑒𝜃3𝜉) +

𝐶5𝑀 + 𝐶6,  

Integrating Eq. (27) concerning 𝜉 then we get: 

 (36)  𝜏𝑥𝑦(𝜉) = −𝑀𝑉𝑥(𝜉) − ∫ 𝐸𝑥(𝜉) 𝑑𝜉 

Substituting from Eqs. (26,37) into Eq. (38), we obtain: 

 (37)𝜏𝑥𝑦(𝜉) = −𝑀(𝐶2𝑒𝜃1𝜉 + 𝐶3𝑒𝜃2𝜉 + 𝐶4𝑒𝜃3𝜉) +

𝛼0𝑀 (
𝐶2

𝜃1
2 𝑒𝜃1𝜉 +

𝐶3

𝜃2
2 𝑒𝜃2𝜉 +

𝐶4

𝜃3
2 𝑒𝜃3𝜉) + 𝐶5𝑀𝜉 + 𝐶6𝜉 +

𝐶7 

applying Eq. (28) together with condition (25-C), we 

obtain that 𝐶5 = C6=C7=0 while the three constants 

𝐶2 ,C3 and C4 can be calculated from the conditions 

(25), which gives the three following equations: 

 (38)   𝐸𝑥(𝜉 = 0) = 0, 𝜏𝑥𝑦(𝜉 = 0) = 0, 2𝑉𝑥(𝜉 =

−𝑀) + 𝜏𝑥𝑦(𝜉 = −𝑀) = 2𝑀𝑝𝑒−𝛼1 

Substituting from Eqs. (26, 35, 37) into the system of 

Eqs. (38), we obtain three algebraic equations in three 

unknown constants 𝐶2, 𝐶3 and 𝐶4  , which can be solved 

easily by usual methods of algebra to get the values of 

𝐶2, 𝐶3 and 𝐶4  to obtain the complete solution of the 

problem, as we will do in the applied example. 

Substituting the calculated velocities 𝑉𝑥1and 𝑉𝑥2 from 

Eqs. (11, 26, 37) into Eq. (4) for 𝑓1and 𝑓2 we may now 

begin to investigate the system's non-equilibrium 

thermodynamic characteristics. 

 

4. The Non-Equilibrium Thermodynamic Descriptions 

   The IT processes are still representing a hot exciting 

topic. That is due to the theory's broad theoretical 

significance and diverse applicability in various fields. 

We begin by calculating the entropy per unit mass S, 

going back to the basics of the H-theorem. It has 

written as [24-26]: 

(39)𝑆 = − ∫ 𝑓 𝑙𝑛 𝑓 𝑑�̱� = −(∫ 𝑓1 𝑙𝑛 𝑓1 𝑑�̱� +

∫ 𝑓2 𝑙𝑛 𝑓2 𝑑�̱�) = −𝜋
3

2 [(𝑉𝑥1
2 + 𝑉𝑥2

2) −
3

2
] 
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Moreover, we get entropy flow in the y-direction: 

 (40)  𝐽𝑦
(𝑆) = − ∫ 𝑐𝑦𝑓 𝑙𝑛 𝑓 𝑑�̱� = −(∫ 𝑐𝑦𝑓1 𝑙𝑛 𝑓1 𝑑�̱� +

∫ 𝑐𝑦𝑓2 𝑙𝑛 𝑓2 𝑑�̱�) = [𝜋(𝑉𝑥1
2 + 𝑉𝑥2

2)]  

In its global form, the principle of entropy generation 

[28-30] is expressed as: 

(41)𝜎 =
𝜕𝑆

𝜕𝑡
+ �⃗⃗� • 𝐽(𝑆)⃗⃗ ⃗⃗ ⃗⃗⃗. 

We may calculate the thermodynamic force equivalent 

to the control factors 𝑀𝑝 [9] using the grand principle 

of IT:  

(42)  𝑋𝑀𝑝 =
𝜕𝑆

𝜕𝑀𝑝
.      

The connection among entropy generation and 

thermodynamic forces, but from the other side, takes 

the form [24-26]:  

(43)  𝜎 = ∑ ∑ 𝐿𝑖𝑗𝑋𝑖𝑋𝑗𝑗𝑖 =𝐿11𝑋𝑀𝑝
2. 

In our problem, the condition of the Onsager 

inequality will be satisfied by the kinetic coefficient 𝐿11 

and the thermodynamic force  𝑋𝑀𝑝 as 𝐿11 ≥ 0. 

To investigate the system's IEM. The extended Gibbs 

relation [9, 27] is introduced, consisting of EMF energy as 

a part of the total system energy. We distinguish 

paramagnetic and diamagnetic RGP [9].  

   Case1: The RGP is paramagnetic, the IEM is stated in 

terms of the extended thermodynamics coordinates S, 

P, and m, which correspond to the intensive 

thermodynamics’ coordinates T, E, and B, 

correspondingly, the different influences in the IEM in 

Gibbs methodology: 

(34)   dU = dUS + dUpol + dUpara, where 

dUS      = TdS    is the IEM because of a variant of the 

entropy,  

dUpol    = EdP   is the IEM because of a variant of 

polarization, and 

dUpara = Bdm is the IEM because of the variant of 

magnetization. Here m is calculated from the Equation 

[9, 27]:  
𝜕𝑆

𝜕𝑚
= −

𝐵

𝑇
⇒ 𝑚 = − ∫ (

𝑇

𝐵

𝜕𝑆

𝜕𝑦
)

𝑡
𝑑𝑦.  presenting 

the nondimensional quantities 𝑈′ =
𝑈

𝐾𝑇0
, 𝑚′ =

𝑚 (
1

𝑒𝜏𝑉𝑇ℎ
) , 𝑝′ = 𝑝 (

1

𝑒𝜏𝑉𝑇ℎ
) in the Gibbs’ rule to get 

(dropping primes):  𝑑𝑈 = 𝑑𝑆 + 휀1𝐸𝑑𝑝 + 휀1𝐵𝑑𝑚. 

   Case 2: If the RGP is diamagnetic, the IEM because of 

the extensive S, P, and B and intensive variables T, E, 

and m, correspondingly. Therefore, there are three 

influences in the IEM in the Gibbs rule given by:  dU = 

dUS + dUpol + dUdia,, where dUdia = -mdB is the IEM 

 because of induced magnetic induction variant  𝑚 =

𝑇
𝜕𝑆

𝜕𝐵
 [11, 31]. As a result, the nondimensional form of 𝑑𝑈 

in just this example is: 

  𝑑𝑈 = 𝑑𝑆 + 휀1𝐸𝑑𝑝 − 휀1𝑚𝑑𝐵, where  

휀1 = (
𝑚𝑒𝑉𝑇ℎ

2

𝐾𝑇0
)  ,𝑑𝑆 = (

𝜕𝑆

𝜕𝑟
)  𝛿 𝑦 + (

𝜕𝑆

𝜕𝑡
) 𝛿 𝑡  ; 𝛿𝑦 =

3,   𝛿𝑡 = 20. 

 

5. Discussion  

   The unsteady performance of RGP is investigated by 

applying the traveling-wave techniques and the kinetic 

theory of IT processes. Our calculations are based on 

detailed data for RGP in Argon RGP [28] as a diamagnetic 

medium in which the Argon RGP loses electron pairs as 

a function of the voltage used to ionize the Argon 

atoms, exposed to the following parameters: 

𝐾𝐵 = 1.3807 𝑥 10−16𝑒𝑟𝑔/𝐾𝑜, 𝑇0 =  300 𝐾𝑜, 𝑛𝑒  =

 7 𝑥 1014𝑐𝑚 −3, 𝑑 = 3.84 x 10 −8𝑐𝑚 (Argon atom 

diameter), the electron mass, charge 𝑚𝑒 =

 9.093 × 10−28𝑔𝑚, 𝑒 = 4.8 𝑥 10−10 𝑒𝑠𝑢   are applied 

to calculate the dimensionless  parameter 𝛼0 = 9.37, 

the particles  Mach number 𝑀 = 10−1 and the mean 

free path of the RGP 𝜆 =
1

√2𝜋𝑛𝑒𝑑2 =

0.2180 𝑐𝑚  𝑡ℎ𝑎𝑡 comparing with Debye’s length     

𝜆𝐷𝑒 = √
𝐾𝐵𝑇0

4𝜋𝑛𝑒𝑒2 = 6.389 𝑥 10−6 𝑐𝑚, 휀1 = 1.667,  and 

the plate Mach number 𝑀𝑝 = 5𝑥10−2. 

   Fig. 2 sheds light upon a comparison of the 

combination perturbation EVDF 

𝑓 [𝑓1(𝑔𝑟𝑒𝑒𝑛), 𝑓2 (𝑟𝑒𝑑)] with the equilibrium EVDF 

 𝑓0 (𝑌𝑒𝑙𝑙𝑜𝑤 − 𝐺𝑟𝑖𝑑) at various time values (a) as 𝑡 = 1, 

(b) as 𝑡 = 30, (c) as 𝑡 = 40, and (d) as 𝑡 = 70 all figures 

done for a fixed (𝑦 = 0.3) with plate’s Mach number 

𝑀𝑎 =  0.05. It shows that the distance from ES is 

small. The system, over time, works to restore the ES, 

which proves that the system complies with the 2nd law 

of thermodynamics and conforms to the Le Chatelier ES 

principle. Fig. 3 Illustrates (a) the equilibria EVDF 𝑓0 (b) 

the combination perturbation EVDF 𝑓, and (c) a 

combination of equilibrium and non-equilibrium EVDF. 
All of them show that the system almost approaches ES 

as t=100. The advantage of the EVDF representation 

and calculation is that it illustrates how the system is 

far from ES and when it may reach an ES. We can do 

that   after   many   evolutions   of   both perturbed and  
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Fig. 2 Comparison of the combination perturbation EVDF   f [f1(Green), f2 (Red)] with the equilibria EVDF 𝑓0(Yellow-Grid) 
at (t = 1, 30, 40 and 70) for a fixed (y =0.3) with plate's Mach number Ma = 0.05 

 

 

Fig. 3 Distinction of the equilibria EVDF  𝑓0(Yellow-Grid) and the coupled perturbed EVDF  f [f1(Green), f2 (Red)] and at (t = 
100) for a fixed (y =0.3) with plate's Mach number Ma = 0.05 

 

 

 

equilibrium EVDF and compare them every time. 

When the equilibrium EVDF matches the unbalanced 

EVDF thus, we   conclude   that  the system reaches the  

 ES. That advantage cannot be reached by solving 

macroscopic types like Navier-Stocks and other 

macroscopic magnetohydrodynamic models. 
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The mean velocity is seen from Fig. 4, at the 

neighborhood of the sudden movement of the plate, it is 

a maximum (≈ 𝑀𝑝) and then declines time exponentially. 

It decreases non-linearly with the distance y. 

Fig. 4 The velocity Vx vs. y and t 

 A similar performance holds for the shear stress 𝜏𝑥𝑦  except 

that 𝜏𝑥𝑦 equals zero at t=0 and y=0 also, it has a negative 

sign owing to its direction from bottom to upper,               

see Fig. 5. 

Fig. 5 The shear stress 𝜏𝑥𝑦vs. y and t 

 

   The mean velocity is seen from Fig. 4, at the neighborhood 

of the sudden movement of the plate, it is a maximum (≈

𝑀𝑝) and then declines time exponentially. It decreases non-

linearly with the distance y. A similar performance holds for 

the shear stress 𝜏𝑥𝑦  except that 𝜏𝑥𝑦 equals zero at t=0 and 

y=0 also, it has a negative sign owing to its direction from 

bottom to upper, see Fig. 5. 

   We considered the RGP is taken as Newtonian [9]. The 

viscosity impairs the motion, which is non-linear 

incrementally increasing as the RGP deviates from the 

surface. It increases with increasing time because of the 

decrement of the velocity of the electrons, see Figs. 6, 7.  

 

 The amplitude of the induced electric field increases 

exponentially with time t and distance y; see Fig. 7. The same 

observations hold for the induced magnetic; see Fig. 8. 

   The thermodynamic performance is illustrated in Figs. (9-15). 

The performance of the entropy S has a good agreement with 

the 2ed law of thermodynamic and the H-theorem that it 

increases with the increment of time t, see Fig. 9. Also, Fig. 10 

verifies how the performance of the system coincides with H-

theorem since the entropy generation is positive 𝜎 ≥ 0  [24-26]. 

Indeed, the coefficient LMp satisfies the thermodynamics 

restrictions as it has a non-negative value for all the interval 

time and all y; see Fig. 11, 12. 

 

 

Fig. 6 Viscosity coefficient 𝜇 vs. y and t  Fig. 7 The electric field Ex vs. y and t 
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Fig. 8 The magnetic field Bz vs. y and t 

 

 

 Fig. 9 Entropy S vs. y and t 

 

 

 
 
 
 

Fig. 10 Entropy production σ vs. y and t 

 

 Fig. 11 The kinetic coefficient 𝐿𝑀𝑝 vs. y and t 

 
 

   The electron loses (or gains) energy as it passes 

through RGP due to interactions with the particles of 

the surroundings caused by RGP polarization and 

collisions. The forces acting on electrons in the RGP 

from the EMF generated by the particles affect an 

electron's energy loss (or gain). The abruptly shifting 

surface produces work on the RGP, altering the IEM of 

the RGP [29]. 

   As shown in Fig. 13, IEM is smoothly damping with 

time away from the plate due to entropy variant 𝑑𝑈𝑆. 

It also has a linear rise in moving plate proximity owing 

to the energy wasted and received from the particles 

and surface.  

 Fig. 14 demonstrates that the internal energy owing to 

the polarization variant grows as both the time t and 

the distance y increase, which is                          

consistent with the performance of EMFs                                                         

(see Figs. 7,8,14). 

   While the IEM varies smoothly between two 

maximum negative values for the diamagnetic RGP, we 

found 𝑑𝑈𝑑𝑖𝑎 variants in the intensity of the induced 

magnetic field, as seen in Fig. 15.  

   Because of variations in the strength of the EMF, the 

IEM ranges non-linearly between two maximum 

negative values for the Para-magnetic RGP, dUpar, As 

shown in Fig. 16.  
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Fig. 16 dUdia vs. y and t 

 

 

 
Fig. 12 Thermodynamic force XMp vs. y and t 

 

 
Fig. 14 dUpol vs. y and t 

 

 
Fig. 13 dUS vs. y and t 

 

 
Fig. 15 dUdia vs. y and t 
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6. Conclusions 

   The finding of the investigation of the unsteady BGK 

type of the BE in the case of an RGP applying the 

moments, traveling wave, and separation of variables 

methods of the two-sided EVDF and Maxwell’s 

equations is developed within the restrictions of slight 

deviation from ES, RGP, and low Mach numbers. This 

technique allows us to calculate the flow velocity and 

other plasma parameters and variables. We evaluated 

the entropy, its production, and other important 

thermodynamic important variables by utilizing them 

in the EVDF and applying the H-theorem. The results 

correlated well with the H-theorem, thermodynamics 

rules, and Le Chatelier's concept. Via Gibbs’ formula, 

the ratios between the various influences of the IEM 

are evaluated. 

We found that the maximum numerical values of the 

three IEM influences in the Dia-magnetic case are 

ordered in magnitude as: 

 𝑑𝑈𝑆:  𝑑𝑈𝑝𝑜𝑙: 𝑑𝑈𝑑𝑖𝑎  =  1: 1.67 × 10:  2.5 × 10−4.  

   While In the Para-magnetic scenario, the maximum 

quantities of the three IEM impacts are ordered in 

magnitude as: 

        𝑑𝑈𝑆:  𝑑𝑈𝑝𝑜𝑙: 𝑑𝑈𝑝𝑎𝑟 = 1:  1.67 × 10:  1.67. 

   It is concluded: various IEM influences, such 

as  𝑑𝑈𝑝𝑜𝑙 , 𝑑𝑈𝑑𝑖𝑎 , 𝑎𝑛𝑑 𝑑𝑈𝑝𝑎𝑟, owing to EMF, are 

dominated compared to 𝑑𝑈𝑆. In recognition that the 

flow had not been influenced by variation in 

temperature. In contrast, it was influenced by the EMF 

that was self-produced by the sudden motion of the 

rigid plate. 3D-Graphics illustrate the calculated 

variables' performances are shown, and their behavior 

is profoundly examined. Our finding concluded that: 

Our model and its solution and all calculated variables 

are compatible with IT laws. 

 

7. Nomenclature 

�⃗⃗⃗�: Induced magnetic field vector, BI:  Induced magnetic 

field, 𝑬:⃗⃗⃗⃗  Induced electric induction vector, E: Induced 

electric field, �⃗⃗⃗�: Lorentz’s force vector, f: Electron 

velocity distribution function, f0:  Equilibrium EVDF,     

f1: Frist component of EVDF, f2: Second component of 

EVDF, J: Current density, Jy
(S) : Entropy flux component, 

KB : Boltzmann constant (Erg/K0)1.38 10-16, L11: Kinetic 

coefficient, Mp : Plate Mach number, M: Particles 

Mach   number, P :    Polarization,     R:  Gas    constant, 

 

  

S: Entropy per unit mass, T: Temperature, U:      

Internal energy of the gas, U 0 :  Plate Velocity constant, 

Vx : Mean velocity, Vx1 :   Mean velocity related to f1, Vx2  

:  Mean velocity related to f2, V  :  Gas volume,  XMp :  

Thermodynamic force, c0: Speed of light, C :      

Particles’ velocity, d: Particle’s diameter, e:        

Electron’s charge, me :   Electron’s mass, m:    Specific 

magnetization,  N:        Mean density, ne:       Electron’s 

concentration, P:        Pressure, �⃗⃗�:       Position vector of 

the particle, t:         Time variable, �⃗⃗⃗�:        Mean velocity 

of the particle, dUS:    IEM due to entropy, dUPol : IEM 

due to polarization, dUpar : IEM due to magnetization, 

dUdia : IEM due to magnetic field, y:        Displacement 

variable, ': Dimensionless variable, e: Related to 

electrons,           i:  Related to ions, τ:       Relaxation 

time, τxy :   Shear stress, μ:      Viscosity coefficient, λ:       

Mean free path, α0 :   Dimensionless parameter, α:       

Damping constant. 

 

8. Abbreviations 

BGK: Bhatnagar-Gross-Krook, BE: Boltzmann 

kinetic equation, EMF: Electromagnetic Field, ES:          

Equilibrium State, IEM: Internal Energy 

Modification, MEMS: Micro-Electro-Mechanical 

Systems, NEMS:    Nano-Electro-Mechanical 

Systems, EVDF: Electrons Velocity Distribution 

Function, RB: Rayleigh problem, RGP:  Rarefied 

Gaseous Plasma. 

 

9. Data availability 

   The data used to support the findings of this 

study are included in the article. 

 

10. Declaration of Competing Interest 

   The authors declare that there is no conflict of 

interest regarding the publication of this paper.  

 

11. Acknowledgments 

   This study is supported by the Egyptian Academy 

of Scientific Research and Technology by the 

associated grant number (No. 6508) under the 

ScienceUP Faculties of Science program. 

   Many thanks to the reviewers for their 

outstanding efforts in the review process. Many 

thanks to the editor-in-chief and all the journal 

editorial family members. 

 



 74-36):2/Egy. J. Pure & Appl. Sci. 2021; 59(and Shahein Abdel Wahid   

 

 73 

 

 

 

 

12. References 

1. Abdel Wahid, T. Z. (2012). Kinetic and 

thermodynamic treatment for the exact 

solution of the unsteady Rayleigh flow 

problem of a rarefied homogeneous charged 

gas. Journal of Non-Equilibrium 

Thermodynamics, 37(2): 119 – 141. 

2. Michele, C. (2021). Lectures on the 

Mechanical Foundations of Thermodynamics. 

Springer Nature Switzerland AG. 

3. Henry, C. F. (2022). Thermodynamics, Gas 

Dynamics, and Combustion. Springer Nature 

Switzerland AG. 

4. Arastoopour, H., Gidaspow, D. and 

Lyczkowski, R. W. (2022). Transport 

Phenomena in Multiphase Systems. Springer 

Nature Switzerland AG. 

5. Abourabia, A. M. and Abdel Wahid, T. Z. 

(2012). Kinetic and thermodynamic 

treatments of a neutral binary gas mixture 

affected by a non-linear thermal radiation 

field. Canadian Journal of Physics, 90(2): 137 -

149. 

6. Abourabia, A. M. and Abdel Wahid, T. Z. 

(2011). Solution of the Krook kinetic equation 

model and non-equilibrium thermodynamics 

of a rarefied gas affected by a non-linear 

thermal radiation field. Journal of Non-

Equilibrium Thermodynamics, 36(1): 75 – 98. 

7. Shidloveskiy, V. P. (1967). Introduction to 

Dynamics of Rarefied Gases. Elsevier NY, 

pp.78 - 85. 

8. Abourabia, A. M., Abdel Wahid, T. Z., Kinetic 

and thermodynamic treatment for the 

Rayleigh flow problem of an inhomogeneous 

charged gas mixture, Journal of Non-

Equilibrium Thermodynamics, 37(1), pp. 1-25, 

2012. 

9. Abourabia, A. M. and Abdel Wahid, T. Z. 

(2010). The unsteady Boltzmann kinetic 

equation and non-equilibrium 

thermodynamics of an electron gas for the 

Rayleigh flow problem. Canadian Journal of 

Physics, 88(7): 501 - 511. 

 10. El-Sakka, A. G., Abdellatif, R. A. and 

Montasser, S. A. (1985). Free Molecular 

Flow of Rarefied Gas Over an Oscillating 

Plate Under a Periodic External Force. 

Astrophysics and Distance Science, 109: 259 

- 270. 

11. Khater, A. H. and El-Sharif, A. E. (1988). 

Analytical solution of the Rayleigh's flow 

problem for a highly rarefied gas of a 

homogeneous system of plasma. 

Astrophysics and Distance Science, 146: 157 

- 162. 

12. Roshid,  Md. M. and Roshid, H. (2018). 

Exact and explicit traveling wave solutions to 

two non-linear evolution equations which 

describe incompressible viscoelastic Kelvin-

Voigt fluid. Heliyon, 4(8): 1 - 12. 

13. Adel M Morad, S. M. A., Maize, A. A. and 

Nowaya, Y. S. R. (2021). A New Derivation of 

Exact Solutions for Incompressible 

Magnetohydrodynamic Plasma Turbulence. 

Journal of Nanofluids, 10(1): 98 - 105. 

14. Abdel Wahid, T. Z. (2013). Travelling waves 

solution of the unsteady flow problem of a 

rarefied nonhomogeneous charged gas 

bounded by an oscillating plate, 

Mathematical Problems in Engineering,1 13 . 

15. Abdel Wahid, T.Z. (2013). Exact solution of 

the unsteady Krook kinetic model and non-

equilibrium thermodynamic study for a 

rarefied gas affected by a non-linear thermal 

radiation field. Canadian Journal of Physics, 

91(3): 201 – 210. 

16. Abdel wahid, T. Z. and Elagan, S. K. (2012). 

Kinetic treatment for the exact solution of 

the unsteady Rayleigh flow problem of a 

rarefied homogeneous charged gas bounded 

by an oscillating plate. Canadian Journal of 

Physics, 90(10): 987 – 998. 

17. Abdel Wahid, T. Z., Elsaid, E. M. and Morad, 

A. M. (2020). Exact solutions of plasma flow 

on a rigid oscillating plate under the effect 

of an external non-uniform electric field. 

Results in Physics, 19: 1 - 11. 

 

 

https://www.sciencedirect.com/science/article/pii/S2405844017340100#!
https://www.sciencedirect.com/science/article/pii/S2405844017340100#!
https://www.ingentaconnect.com/content/asp/jon;jsessionid=1edvvleu92mux.x-ic-live-03


 74-36):2/Egy. J. Pure & Appl. Sci. 2021; 59(and Shahein Abdel Wahid   

 

74  

 

 

 

 

18. Abdel Wahid, T. Z. and Morad, A. M. (2020). On 

Analytical Solution of a Plasma Flow over a 

Moving Plate under the Effect of an Applied 

Magnetic Field. Advances in Mathematical 

Physics, 1 - 11. 

19. Luz Muñoz-Ruiz, M., Parés, C. and Russo, G. 

(2021). Recent Advances in Numerical Methods 

for Hyperbolic PDE Systems. Springer Nature 

Switzerland AG. 

20. Bhatnagar, P., Gross, E. and Krook, M. (1954). 

Model for collision processes in gases I. small 

amplitude processes in the charged and neutral 

one-component system. Phys. Rev.,94(3): 511-525. 

21. Abdel Wahid, T. Z. (2020). On the irreversible 

thermodynamic of a gas influenced by a thermal 

radiation force generated from a heated rigid flat 

plate. Advances in Mechanical Engineering, 12(10): 

1 - 21. 

22. Abdel Wahid, T. Z. and Morad, A. M. (2020). 

Unsteady plasma flow near an oscillating rigid 

plane plate under the influence of an unsteady 

non-linear external magnetic field. IEEE Access, 8: 

76423 - 76432. 

 

 23. Edward, M. P. (1965). Electricity and 

Magnetism. McGraw-Hill Book Co-Singapore  

3rd. 

24. Halid, B. and Igor, I. L. (2021).   Non-

equilibrium Thermodynamics, and Physical 

Kinetics. De Gruyter; 2nd edition. 

25. Hatim, M. (2019). Extended Non-

Equilibrium Thermodynamics: From 

Principles to Applications in Nanosystems. 

 CRC Press, 1st edition. 

26. Baus, M. and Tejero, C. F. (2021). 

Equilibrium Statistical Physics. Springer 

Nature Switzerland AG. 

27. Peter v. d. L. (1998). Thermodynamics 

Stability of Dia- And Paramagnetic 

Materials. Periodica Polytechnica Ser. 

Chem. Eng., 12(2): 97 -102. 

28. Huba, J. D. (2019). NRL Plasma Formulary, 

Naval Research Laboratory, Washington DC, 

20375. 

29. Sitenko, A. G. (1967). Electromagnetic 

Fluctuation in Plasma. Academic Press, New 

York. 

 

 

https://www.amazon.com/s/ref=dp_byline_sr_ebooks_2?ie=UTF8&field-author=Igor+I.+Lyapilin&text=Igor+I.+Lyapilin&sort=relevancerank&search-alias=digital-text
https://www.amazon.com/s/ref=dp_byline_sr_ebooks_1?ie=UTF8&field-author=Hatim+Machrafi&text=Hatim+Machrafi&sort=relevancerank&search-alias=digital-text

