Flavonoids from *Albizia procera*

F. R. Melek¹, Neveen S. Ghaly ¹, M. El-Kady², Marian Nabil¹

¹Chemistry of Natural Compounds Department, National Research Center, Dokki 12622, Giza, Egypt
²Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.

ARTICLE INFO

Received 17 May 2011
Accepted 05 July 2011

Keywords:
Albizia procera; Leguminosae; Flavonoids.

Abstract

The flavonoids luteolin, quercetin-3-O-α-L-rhamnopyranoside, quercetin-3-O-β-D-galactopyranoside, quercetin-3-O-β-D-glucopyranoside and quercetin-3-O-(2"-O-β-D-xylopyranosyl)-β-D-galactopyranoside, were isolated from the methanolic extract of the leaves of *Albizia procera* using chromatographic methods. Identification of the flavonoid constituents was carried by analyzing their spectroscopic data and/or by comparing these data with the reported ones in the literature.

Introduction

The genus *Albizia* (Leguminosae) comprises about 150 species widely distributed in Africa and Central and South America. In Africa, several *Albizia* species are used in folk medicine for the treatment of rheumatism, stomach trouble, cough, diarrhea, wounds and as anthelmintic. In traditional Chinese medicine, *Albizia* members are used for the treatment of insomnia, irritability, wounds and as antisydentic, antiseptic and antibacterial. Phytochemical studies carried out on plants of genus *Albizia*, have revealed them as sources of different groups of natural products, triterpenoid saponins, diterpenoids, flavonoids, lignans, phenolic glycosides and pyrindineglycoside. As a part of our continuous investigation on secondary metabolites from *Albizia* species, we describe in this report the isolation of five flavonoids from the methanolic extract of *A. procera*.

Materials and Methods

General experimental procedure

Column chromatography was run using silica gel 60 (Merck) and Sephadex LH-20 (Sigma). TLC was carried out using silica gel (Merck) as stationary phase. Chromatograms were first visualized by observation under UV and then spraying with FeCl₃ spray reagent. NMR spectra were recorded on a JEOL EX 500 MHz and a Varian GEMINT 200 MHz spectrometers. Chemical shifts were given on δ-scale with TMS as internal standard.

Plant material

The leaves of *A. procera* were collected from the zoological garden in Giza, Egypt. Plant identification was confirmed by Mrs. T. Labib, head specialist for plant identification in El-Orman public garden, Giza, Egypt.

Extraction and Isolation

Air-dried and powdered leaves (750 g) of *A. procera* were extracted with chloroform (2L x 2) and then with MeOH (2L x 2) at room temperature. The total alcoholic extract was evaporated to dryness under reduced pressure. The residue (30 g) was suspended in distilled water (500 ml) and successively partitioned with CH₂Cl₂ (500 ml x 2), EtOAc (700 ml x 3) and BuOH (700 ml x 3). The BuOH fraction (10 g) was subjected to silica gel column chromatography. The column was eluted first with CH₂Cl₂ and then with CH₂Cl₂-MeOH mixture with increasing amount of MeOH to 20%. A total 40 fractions 100 ml each were collected. The fractions were monitored by silica gel TLC plates using solvent system CHCl₃-MeOH-H₂O (60: 30: 5) and examined under UV light followed by spraying with FeCl₃ reagent. The fractions which eluted with 10% MeOH were combined after TLC analysis contained compound 1 as a major component. The combined fraction was repeatedly chromatographed on Sephadex LH-20 column using methanol as eluent to yield pure 1 (40 mg). The fractions which eluted from silica gel column with 12-14% MeOH were combined contained compound 2 as a major component. The combined fraction was repeatedly chromatographed on Sephadex LH-20 column using methanol as eluent to yield pure 2
(50 mg). The fractions which eluted with 15% MeOH were combined. The combined fraction was subjected to preparative paper chromatography eluted with solvent system n-Butanol - Acetic acid – Water (4: 1: 5, upper layer) followed by repeated purification on Sephadex LH-20 column eluted with MeOH to yield inseparable mixture of 3 and 4 (30 mg). The fractions which eluted from the silica gel column with 17% methanol were combined after TLC analysis and found to contain compound 5 as a major constituent. The combined fraction was chromatographed on Sephadex LH-20 column chromatography using methanol as eluent to yield pure 5 (25 mg).

Luteolin (1)

Amorphous yellow powder. 1H-NMR (500 MHz, acetone-d$_6$) δ: 12.96 (1H, s, OH-5), 7.46 (1H, d, J=2.3 Hz, H-2'), 7.44 (1H, dd, J=8.4, 2.3 Hz, H-6'), 6.96 (1H, d, J= 8.4 Hz, H-5'), 6.55 (1H, s, H-3), 6.49 (1H, d, J= 2.3Hz, H-8), 6.21 (1H, d, J= 2.3 Hz, H-6), (OH-7 & OH-4' were not detected).

Quercetin-3-O-α-L-rhamnopyranoside (2)

Amorphous yellow powder. 1H-NMR (500 MHz, acetone-d$_6$) δ: 12.68 (1H, s, OH-5), 7.46 (1H, d, J=2.3 Hz, H-2'), 7.34 (1H, dd, J=8.4, 2.3 Hz, H-6'), 6.95 (1H, d, J=8.4 Hz, H-5'), 6.43 (1H, d, J=2.3 Hz, H-8), 6.22 (1H,d, J= 2.3 Hz, H-6), 5.45 (1H, d, J= 1.5 Hz, Rha H-1'), 3.30-3.32 (Rha H-2'– H-5'), 0.88 (3H, d, J= 5.6 Hz, Rha Me-6'), (OH-7 & OH-4' were not detected).

13CNMR (500 MHz, acetone-d$_6$+D$_2$O) δ: 178.5 (C-4), 164.5 (C-7), 162.3 (C-5), 157.6 (C-2), 157.2 (C-9), 148.5 (C-4'), 145.1 (C-3'), 135.0 (C-3), 121.9 (C-1'), 121.6 (C-6'), 115.9 (C-2'), 115.3 (C-5') 105.0 (C-10), 102.0 (C-1''), 98.7 (C-6), 93.7 (C-8), 71.3 (C-4''), 70.6 (C-2''), 70.5 (C-3''), 70.5 (C-5''), 16.9 (C-6').

Quercetin-3-O-β-D-galactopyranoside (3)

Amorphous yellow powder. 1H-NMR (500 MHz, acetone-d$_6$+D$_2$O) δ: 7.93 (1H, d, J=2.3 Hz, H-2'), 7.52 (1H, d, J=8.6, 2.3Hz, H-6'), 6.88 (1H, d, J=8.6 Hz, H-5'), 6.45 (1H, d, J=2.5 Hz, H-8), 6.20 (1H, d, J= 2.3 Hz, H-6), 5.12 (1H, d, J=7.7 Hz, Gal H-1''), 3.89 (1H, d, J=3.1 Hz, Gal H-5''), 3.82 (1H, t, J=7.7 Hz, Gal H-6'a), (OH-7, OH-4' & OH-5 were not detected).

13CNMR (500 MHz, acetone-d$_6$+D$_2$O) δ: 178.1 (C-4), 164.8 (C-7), 161.4 (C-5), 157.3 (C-2), 157.0 (C-9), 148.8 (C-4'), 144.6 (C-3'), 134.5 (C-3), 121.6 (C-1'), 121.4 (C-6'), 116.9 (C-5'), 115.2 (C-2') 104.2 (C-10), 103.0 (C-1''), 99.0 (C-6), 94.0 (C-8), 76.8 (C-5''), 76.6 (C-3''), 74.3 (C-2''), 69.5 (C-4''), 61.0 (C-6').

Quercetin-3-O-(2''-O-β-D-xylpyranosyl)-β-D-galactopyranoside (5)

Amorphous yellow powder. 1H-NMR (500 MHz, DMSO-d$_6$) δ: 12.67 (1H, s, OH-5), 7.68 (1H, d, J=8.4 Hz, H-6'), 7.47 (1H, bs, H-2'), 6.78 (1H, d, J=8.4 Hz, H-5'), 6.35 (1H, bs, H-8), 6.14 (1H, bs, H-6), 5.66 (1H, d, J=7.7 Hz, Gal H-1''), 4.53 (1H, d, J=6.9 Hz, Xyl H-1''), (OH-7 & OH-4' were not detected).

13CNMR (500 MHz, acetone-d$_6$+D$_2$O) δ: 178.3 (C-4), 164.4 (C-7), 161.5 (C-5), 156.9 (C-2, 9), 148.6 (C-4''), 144.7 (C-3'), 133.8 (C-3), 122.0 (C-1''), 122.6 (C-6'), 116.4 (C-5'), 115.4 (C-2') 104.4 (C-10), 104.2 (C-1''), 100.0 (C-1''), 99.6 (C-6), 93.9 (C-8), 79.4 (C-2''), 75.4 (C-2'', 3''), 73.7 (C-5''), 73.6 (C-3''), 69.5 (C-4''), 68.2 (C-4''), 65.1 (C-5''), 60.0 (C-6').

General method for acid hydrolysis:

Each glycoside (2 mg) in 3 ml 2N HCl and 3 ml methanol was heated at 100°C for 2h. The mixture was left to cool, diluted with H$_2$O and extracted twice with ethyl acetate. From the ethyl acetate layer, the aglycone was detected against reference sample by TLC (chloroform-methanol, 5: 1). The aqueous layer was repeatedly diluted with methanol and evaporated to dryness. The residue was investigated to detect the sugar by paper chromatography (PC) using solvent system n-BuOH-HOAc-H$_2$O (4: 1: 5, upper layer).

Results and Discussion

The methanolic leaf extract of A. procera was dissolved in water and the aqueous solution was successively extracted with chloroform, ethyl acetate then n-butanol. The material from the butanol extract was chromatographed on silica gel column chromatography. The collected fractions were examined by TLC and similar fractions were combined. The semi-purified compounds from the combined fractions were then purified using Sephadex-LH20 column chromatography and preparative paper chromatography to afford the flavonoids luteolin (1), quercetin 3-O-α-L-rhamnopyranoside (2) quercetin 3-O-β-D-galactopyranoside (3) quercetin 3-O-β-D-glucopyranoside (4) and quercetin 3-O-(2''-O-β-D-xylpyranosyl)-β-D-galactopyranoside (5). The structures of the isolates were determined by acid hydrolysis, 1H and 13CNMR spectroscopic analysis and/or comparison with published data. The flavonoid luteolin 1 was characterized by comparison of their spectral data with literature values. In the 1H-NMR spectrum of Quercetin 3-O-α-L-rhamnopyranoside 2, the presence of signals due to three meta – coupled protons at δ 6.22 (1H, d, J=2.3 Hz, H-6), δ 6.43...
(1H, d, J= 2.3 Hz, H-8) and δ 7.46 (1H, d, J= 2.3 Hz, H-2') as well as two ortho-coupled protons at δ 6.95 (1H, d, J= 8.4 Hz, H-5') and δ 7.34 (1H, dd, J= 8.4, 2.3 Hz, H-6') along with carbon signal at δ 178.5 (C-4) in the 13CNMR spectrum, indicated a typical 3', 4', 5, 7-tetrahydroxyflavonol skeleton. The two doublets in the 1HNR spectrum of 2 at δ 5.45 (1H, J= 1.5 Hz) and δ 0.88 (3H, J= 5.6 Hz) were assigned to H-1" and H-6" of a rhamnose unit. The 13CNMR data of 2 and the result of acid hydrolysis indicated α-L-rhamnopyranoside. The attachment of the moiety at C-3 position of the aglycone was revealed from the δ value of C-3 (135.0 ppm) and that of C-2 (157.6 ppm).

Compound 2 was then assigned the structure of quercetin 3-O-α-L-rhamnopyranoside based on the above spectral evidences and comparison with literature values.

Quercetin-3-O-β-D-galactopyranoside 3 and Quercetin-3-O-β-D-glucopyranoside 4 were observed as inseparable mixture with compound 3 as the major component. The 1HNR spectrum of 3 and 4 showed two sets of signals due to quercetin moiety. One set of signals was at δ 7.93 (1H, d, J=2.3 Hz, H-2'), 7.52 (1H, dd, J=8.6, 2.3Hz, H-6'), 6.88 (1H, d, J=8.6 Hz, H-5'), 6.45 (1H, d, J=2.5 Hz, H-8), 6.20 (1H, d, J=2.3 Hz, H-6). The other set was at δ 7.79 (1H, d, J=2.3 Hz, H-2'), 7.52 (1H, dd, J=8.6, 2.3 Hz, H-6'), 6.89 (1H, d, J=8.6 Hz, H-5'), 6.44 (1H, d, J=2.5 Hz, H-8), 6.20 (1H, d, J= 2.5 Hz, H-6). The spectrum also exhibited two proton signals at δ 5.12 (1H, d, J=7.7 Hz) and δ 5.21 (1H, d, J=7.6 Hz) assigned to anomeric proton of β-galactose and that of β-glucose, respectively. The 13CNMR spectrum of 3 and 4 showed two sets of signals due to the quercetin moiety and two sets of signals attributable to a galactose and glucose moieties, respectively (experimental section). The signals of galactose moiety were at δ 104.0 (C-1"), 75.6 (C-5"), 73.6 (C-3"), 71.8 (C-2"), 68.1 (C-4") and 60.2 (C-6") while the signals due to the glucose moiety were at δ 6103.0 (C-1"), 76.8 (C-5"), 76.6 (C-3"), 74.3 (C-2"), 69.5 (C-4"), 61.0 (C-6").

Acid hydrolysis of 3 and 4 afforded quercetin identified by TLC comparison against authentic sample as well as the sugar component D-galactose and D-glucose recognized by paper chromatography against standard samples. The β-configuration of the anomeric centers was determined as β from the J$_{1,2}$ values and the 13CNMR data indicated pyranose form for the two sugar units. The site attachment of the sugar moiety to C-3 position of quercetin, was established from the δ value of C-3 resonances at δ 134.5 and C-2 resonances at δ 157.3 for 3 and 4. These values agreed well with the literature values and the corresponding ones in the 13CNMR data of compound 2 as well as other quercetin-3-O-glycosides.

Quercetin-3-O-(2′-O-β-D-xylopyranosyl)-β-D-galactopyranoside 5 is another quercetin 3-O-glycoside from the characteristic 1H and 13CNMR resonances as well as acid hydrolysis which afforded quercetin moiety and the sugar components D-galactose and D-xylose. The 13CNMR spectrum of 5 showed in addition to the resonances of the quercetin moiety, eleven carbon resonances assigned to a 2-O-substituted β-galactopyranose (C-2", 79.2 ppm; C-1", 100.0 ppm) and a terminal β-D-xylopyranose units. The 13CNMR resonances of the anomeric protons of D-galactose and D-xylose were deduced from the J$_{1,2}$ values for both sugar units.

The pyranose form for the sugar units was determined from their 13CNMR data. The attachment of the terminal β-D-xylopyranose unit to the inner β-D-xylopyranose unit was established from the observed downfield position of C-2" and upfield position of C-1" of the inner sugar with reference to the corresponding values for compound 3 (δ C-2", 71.8; δ C-1", 104.0). The full structure of 5 was confirmed by comparing its spectral data with those reported in the literature.

Luteolin, quercetin 3-O-α-L-rhamnopyranoside and quercetin-3-O-β-D-galactopyranoside were previously reported from A. julibrissin. This is the first reported occurrence of quercetin-3-O-β-D-glucopyranoside and quercetin-3-O-(2′-O-β-D-xylopyranosyl)-β-D-galactopyranoside in genus Albizia.

![chemical structure](image-url)
References