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We consider the Picard's iteration method as a technique for solving initial value 

problems of the first and second order linear differential equations. The basic idea 

is the use of integrating factors to collect some of the terms in a perfect 

differential term, and then use the decomposition techniques. For the second 

order differential equations, we transform the equation to a system of two first 

order equations and in addition we use the Gauss Seidel technique. The algorithm 

of the proposed method is discussed. Comparisons with the classical Picard 

method and modified Picard have illustrated the rapid convergence of the 

proposed method. Numerical examples have illustrated that the technique obtains 

the theoretical fixed point quicker than that obtained with other techniques 

including the modified Picard. 

Keywords: 
Picard iteration; 

Integrating factor; 

Gauss-Seidel method. 

 

Introduction 

Recently there has been interest in symbolic 

computations in treating initial and boundary value 

problems
1-3

 and the references cited there. Many 

methods: Fixed point iteration method, Adomian 

decomposition method and Variational iteration method 

are good examples for methods in which symbolic 

computation takes place
3-5

. Also, there exist some codes 

for the power series and the method of Frobenius's. 

Among all polynomial approximations which can satisfy 

a differential equation on a finite number of points, there 

is only one polynomial which approach the solution 

between those points, and that is the truncated 

Maclaurin series, Rudmin
6
. The fixed point theorem is 

the main topic through which many mathematical 

methods are developed. For a long period it was 

considered as a method to prove existence not as method 

of solution. Picard iteration was assumed impractical as 

a solution method. The advent of computer algebra 

systems has removed this impracticality, Mathews
2
 and 

Pruett et al
7
. Furthermore, attempts to design practical 

solution methods based upon Picard iteration have 

yielded not only successful new algorithms but also 

have raised intriguing theoretical issues to cover 

problems of boundary value type and problems in partial 

differential equations. Nevanlinna
8
, considered first ord- 

 er linear systems with constant coefficients and he 

discussed the possibility of accelerating the convergence 

of the process using ideas common in accelerating 

iterations for linear algebraic systems of equations. 

Hyvönen
9
, considered polynomial acceleration of the 

Picard-Lindelöf iteration for first order linear systems 

with constant coefficients in the sense that he can take 

linear combination of previous iterates.  Youssef and 

Alarabawy
3
, showed that the use of Gauss Seidel 

iteration with Picard technique even with equations with 

variable coefficients or simple nonlinearities improved 

considerably the results of the classical Picard iteration.  

From the functional analysis point of view, the 

contraction mapping principal, is considered as the main 

tool to introduce a rigorous proves   

Definition: Let E be a complete metric space with 

distance ρ, let A be a mapping of E into itself. Then A is 

said to be a contraction mapping if there exists a 

constant           such that the inequality  

                    (1) 

holds for every pair of points        . 

If       is a contraction mapping, then the operator 

equation        has a unique solution and this 

solution is equal to the limit of the approximation 

                     (2) 

Yildiz and Simsek
10

, considered the semi-linear operator 

equation 

              (3) 
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in the E- Banach spaces, where       is a linear 

bounded operator defined in E such that         
   is 

a bounded operator,       is a nonlinear operator 

defined in E and I is the identity operator. The 

successive approximations corresponding to equation 

(3) is 

                               (4) 

for arbitrary      . The approximation (4) can be 

written as 

           
                   (5) 

In this work we investigate the effect of reformulating 

the equations through differential identities (grouping 

terms, the rules of derivatives and integrating factor 

tools) before the application of the Picard iteration 

method. Also we consider the effect of this treatment on 

the rate of convergence of the Picard iteration. We 

restrict this work to problems up to second order initial 

value problems with smooth real valued data which 

admits only exponential behavior, which take the form: 

00 )(        ;              ),()( ytyytgytpy   (6) 

Or  

                ;              (7) 

with the initial conditions            
        , and 

the right hand side       preserves the exponential 

behavior of the solution but with different attitudes. 

It is well known that, the second order equation (7) can 

be written as a system of first order equations by taking 

                            (8) 

Thus, we obtain 

  
                      

  
                                 

(9) 

The approach extends straight forwards for higher order 

equations.  

In this section, we briefly review Picard iteration 

method. Emile Picard's in 1891, begin by reformulating 

the initial value problem:  

00 )(        ;              ),( ytyytfy 
  , (10) 

as an equivalent integral equation 

,))(,()(

0

0 dttytfyty

t

t



 

(11) 

whose solution y(t) can be obtained as the limit of a 

sequence of functions yn(t) generated by the recurrence 

formula
11-12

,  

 ,3 ,2 ,1,))(,()(

0

10    ndttytfyty

t

t

nn

 

(12) 

It is well known that if the right-hand side of (10), 

),( ytf , satisfies Lipschitz condition with respect to y 

                                      ,  in 

some closed rectangle                      
  , then, irrespective of the choice of the initial function, 

the successive approximation yn(t) converge on some 

interval ],[ 00 htt   to the solution of the problem (10). 

Also, if ),( ytf  is continuous in the rectangle ,R  then 

the error of the approximate solution )(tyn  is estimated  

 by: 

|),(|max    ,      
)!1(

)(
|)()(|

},{

1

0 ytfM
n

tt
MLtyty

Ryt

n
n

nn








  

in the interval ],[ 00 htt  , h  is determined from the 

condition ).,min(
M

b
ah   Banach's fixed point 

theorem implies that the solution y(t) is the limit of the 

sequence 1}{ nny  Boyce and Diprima
11

. 

The initial value problem (IVP) for a system of 2 first 

order ordinary differential equations (ODE's) can be 

written in the form: 

2,1  ; )(;),,( 021  ityyytf
dt

dy
iii

i  . (13) 

Accordingly, the classical Picard's method for the IVP 

(13) is obtained by the replacement of every equation in 

(13) by the corresponding integral form, as follows: 

,,2,1  ,2,1;),,()(

0

1,21,10,    nidtyytftyy

t

t

nniini  
(14) 

the corresponding modified Picard's method combined 

with Gauss Seidel method takes the form: 

 ,),,()(

0

1,21,1101,1  

t

t

nnn dtyytftyy  (15) 

.),,()(

0

1,2,1202,2  

t

t

nnn dtyytftyy  

Material and methods 

The objective of this work is the use of the integrating 

factor approach for the first order equations to 

accelerate the convergence of Picard iteration method.   

As well as decompose the system corresponding to the 

linear second order initial value problems into two parts 

and use the integrating factor for one part and use the 

Gauss seidel approach described in
3
 

Case (I):  Consider the equation 

00 )(  ; ),()( ytyytgytpy   (16) 

Using integrating factor, equation (16)  can be written 

in the form: 
 

  
                               (17) 

Applying Picard approach we have 

           
                      

                    

  
                                     

              
      

               

(18) 

Case (II):  The second order linear differential equation 

                ,                                              (19) 

with the initial conditions           
       , 

which can be written as 

  
                                                       (20) 

               
 
    

 
  

 
         

Treating the first equation as in (3) and the second 
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Accordingly, 

                      
 

 
                                   (21) 

                                     
 

 
                                            

                                                            

Results and Illustrative Examples: 

In this section, we apply the above technique to different 

examples of second order differential equations with 

exponential behavior in the right hand side of the 

equation or implicitly in the complementary function.  

Example (1): Consider the initial value problem of 

second order differential equation 

                                                                            (22) 

The nonhomogeneous term is a part of the 

complementary function of the differential equation, the 

exact solution is:  

       
  

 
        (23) 

The corresponding system is: 

  
                                   

  
                                      

(24) 

Accordingly, the corresponding Picard method is 

                   
 

 

 (25) 
 

 

                                    

 

 

                   

the corresponding Picard method with Gauss Seidel is 

                 
 

 

 
 

 (26) 

                                  
 

 
                                                   

the corresponding Picard with integrating factor is 

                 
 

 

 (27) 

                    
 

 
                                                                 

and the corresponding Picard modified by Gauss Seidel 

with integrating factor is 

                 
 

 

    
 

(28) 

                    
 

 

                                    

The results of the Picard method as given by formula 

(25), the Picard method modified with Gauss Seidel as 

given by formula (26), the Picard method modified with 

integrating factor as given by formula (27) and the Picard 

method modified with integrating factor with Gauss 

Seidel as given by formula (28), are summarized along 

the interval [0, 1] in the following tables: 

 

 

Table 1: The numerical results with only seven iterations. 

   Exact 

   

Picard 

       
Picard-Gauss S. 

       
Picard  with I.F 

       

Picard- G.S. with I.F 
      

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.904697 

0.81779 

0.738152 

0.665007 

0.597804 

0.536126 

0.479631 

0.428021 

0.381014 

0.338338 

0.904697 

0.81779 

0.738152 

0.665012 

0.597835 

0.53626 

0.48009 

0.429353 

0.384422 

0.346225 

49.409.0 

497100. 

49087100 

49990..0 

493.0840 

49388770 

49001377 

490483.8 

49813.80 

4.107030 

49.409.0 

497100. 

4908713. 

49993440 

493.0740 

49389180 

4900.993 

490.7147 

49871.1. 

49887009 

0.904697 

0.81779 

0.738152 

0.665007 

0.597804 

0.536126 

0.479631 

0.428021 

0.381014 

0.338338 

 

 

Table 2: The numerical results with eleven seven iterations. 

   Exact 

  

Picard 

       
Picard-Gauss S. 

       
Picard with I.F 

      

Picard- G.S. with I.F 

      

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.904697 

0.81779 

0.738152 

0.665007 

0.597804 

0.536126 

0.479631 

0.428021 

0.381014 

0.338338 

49.409.0 

497100. 

4908713. 

49993440 

493.0740 

493891.9 

4900.981 

490.74.. 

4987141. 

49887830 

0.904697 

0.81779 

0.738152 

0.665007 

0.597803 

0.536119 

0.479585 

0.427776 

0.379948 

0.334336 

4..409.2 

4.7122. 

4.2771.7 

4.99.442 

4...2740 

4..79179 

4.02.971 

4.077471 

4.771410 

4.77777. 

0.904697 

0.81779 

0.738152 

0.665007 

0.597804 

0.536126 

0.479631 

0.428021 

0.381014 

0.338338 
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From tables (1, 2) we find that the use of integrating 

factor with Gauss Seidel approach gives results similar 

to the exact solution after only seven steps in 

comparison with at least eleven steps when using Gauss 

Seidel without integrating factor moreover the results of 

the modified Picard method with Gauss Seidel improved 

by the integrating factor does not change during the 

calculations from the seventh's iteration until the elevens 

iteration, which means that we have obtained the fixed 

point.  

Example (2):  Consider the initial value problem 

                                                  (29) 

The nonhomogeneous term contains a part of the 

complementary function of the differential equation 

multiplied by a second degree polynomial plus another 

 simple function, the exact solution is: 

  
  

  
   

  

   
       

 

 
       

  

 
 

 

 
 

 

  
                                    (30) 

The corresponding system takes the form: 

  
                       (31) 

  
                                    

the corresponding Picard modified by Gauss Seidel with 

integrating factor is  

                                        
 

 

 

 

(32) 

                 
 

 

                         

            

 

 

Table 3: The numerical results with only six iterations. 

   Exact 

  

Picard  

      

Picard-Gauss S. 

      

Picard  with I.F 

     

Picard- G.S. with I.F 

     

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.0908019 

0.166192 

0.230241 

0.286632 

0.33885 

0.390365 

0.444821 

0.50623 

0.579183 

0.669092 

0.0908019 

0.166192 

0.230239 

0.286613 

0.338763 

0.390065 

0.443962 

0.504101 

0.574459 

0.659482 

494.4741. 

491991.. 

49.84.01 

49.7998. 

49887707 

498.4891 

4900071. 

49349.11 

4930.13 

4999.487 

4.4.4741. 

491991.. 

49.84.01 

49.7998 

4988770 

498.4880 

49000083 

493494.. 

49307080 

49997.4. 

0.0908019 

0.166192 

0.230241 

0.286632 

0.33885 

0.390365 

0.444821 

0.50623 

0.579183 

0.669092 

 

Table 4. The numerical results with minimum number of iterations which gives the exact solution 

for each method. 

   Exact 

  

Picard  

        
Picard-Gauss S 

     

Picard  with I.F 

      

Picard- G.S. with I.F 

     

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.0908019 

0.166192 

0.230241 

0.286632 

0.33885 

0.390365 

0.444821 

0.50623 

0.579183 

0.669092 

494.4741. 

491991.. 

49.84.01 

49.7998. 

4988773 

498.4893 

490007.1 

49349.8 

4930.178 

4999.4.. 

0.0908019 

0.166192 

0.230241 

0.286632 

0.33885 

0.390365 

0.444821 

0.50623 

0.579183 

0.669092 

494.4741. 

491991.. 

49.84.01 

49.7998. 

4988773 

498.4893 

490007.1 

49349.8 

4930.178 

4999.4.. 

0.0908019 

0.166192 

0.230241 

0.286632 

0.33885 

0.390365 

0.444821 

0.50623 

0.579183 

0.669092 

 

From table (3) one can see that the use of integrating 

factor with Gauss Seidel approach gives results similar 

to the exact solution after only six iterations. Table (4) 

illustrates the number of different iterations required to 

obtain the same results with the different methods.  

Example (3): Consider the initial value problem 

                                                                        (33) 

The nonhomogeneous term contains part of the 

complementary function of the differential equation 

multiplied by a first degree polynomial plus another 

simple term.  The exact solution is: 

 

 

            
  

 
      (34) 

The system of the IVP takes the form 

  
                        (35) 

  
                                      

the corresponding Picard modified by Gauss Seidel with 

integrating factor is  

                                           
 

 

 (36) 
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From table (5) we find that the integrating factor 

approach with Gauss Seidel gives results similar to the 

exact solution after only six iterations. Table (6) 

illustrates the number of different iterations required to  

 obtain the same results with the other methods. 

In Table (5-6) we introduce the comparison between the 

Picard's solution and the approximate solution by using 

the proposed technique. 

 

 

 

Table 5. The numerical results with only six iterations. 

   Exact 

  

Picard  

      

Picard-Gauss S. 

      

Picard  with I.F 

       

Picard- G.S. with I.F 

     

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

191.900 

1981030 

1930988 

19..089 

.987398 

.9.0.8. 

8901.80 

099834. 

390009 

0910188 

191.900 

1981030 

1930988 

19..083 

.987337 

.9.0.10 

89011. 

0998871 

390010. 

0919388 

191.900 

1981030 

19309.3 

19..9. 

.987877 

.9.9011 

899..17 

0994339 

3901097 

0943713 

191.900 

1981030 

193098. 

19..08. 

.987309 

.9.0100 

8901470 

09981.. 

39099.. 

0913011 

191.900 

1981030 

1930988 

19..089 

.987398 

.9.0.8. 

8901.80 

099834. 

390009 

0910188 

 

 

Table 6. The numerical results with minimum number of iterations which gives the exact solution 

for each method. 

   Exact 

  

Picard  

        

Picard-Gauss S 

      

Picard  with I.F 

     

Picard-Green G.S. 

      

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

 191.900 

1981030 

1930988 

19..089 

.987398 

.9.0.8. 

8901.80 

099834. 

390009 

0910188 

191.900 

1981030 

1930988 

19..089 

.987398 

.9.0.8. 

8901.80 

099834. 

390009 

0910188 

191.900 

1981030 

1930988 

19..089 

.987398 

.9.0.8. 

8901.80 

099834. 

390009 

0910188 

191.900 

1981030 

1930988 

19..089 

.987398 

.9.0.8. 

8901.80 

099834. 

390009 

0910188 

191.900 

1981030 

1930988 

19..089 

.987398 

.9.0.8. 

8901.80 

099834. 

390009 

0910188 

 

 

Example (4): Consider the initial value problem 

  
                           

    
                       

(37) 

whose exact solution is 

   
  

 
    

 

 
     

   
  

 
    

 

 
     

(38) 

The corresponding Picard iteration is given by  

                               
 

 

 

                              
 

 

  

(39) 

 

 The modified Picard iteration with Gauss-Seidel method 

is  

                               
 

 

 

                            
 

 

  

(40) 

The corresponding Picard modified by Gauss Seidel with 

integrating factor is 

 

           
                         

 

 

   

           
                   

 

 

  

(41) 
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Table 7. The numerical results with only six iterations. 

   Exact 

          

Picard 

      

Picard-Gauss S.  

        

Picard  with I.F 

       

Picard- G.S. with I.F 

       

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

3 

4.61069 

7.04348 

10.7093 

16.2228 

24.5026 

36.9211 

55.5287 

83.3873 

125.069 

187.399 

3 

4.61068 

7.04332 

10.7064 

16.1997 

24.3854 

36.4742 

54.1249 

79.5595 

115.691 

166.267 

3 

4.61068 

7.04307 

10.7022 

16.1688 

24.2408 

35.9663 

52.6606 

75.9048 

107.523 

149.533 

3 

099149. 

0940807 

14904.0 

199..8. 

.09340. 

899.8.. 

339308. 

78930.. 

1.39338 

17790.1 

3 

4.61069 

7.04348 

10.7093 

16.2228 

24.5026 

36.9211 

55.5287 

83.3873 

125.069 

187.399 

 

 

 

A Comparison of the exact solution for    with its successive approximations 

Table 8. The numerical results with only six iterations. 

   Exact 

   

Picard 

     

Picard-Gauss S. 

     

Picard  with I.F 

     

Picard- G.S. with I.F 

     

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

2 

3.38928 

5.55166 

8.88723 

13.9973 

21.7843 

33.6009 

51.4735 

78.4343 

119.019 

180.01 

2 

3.38928 

5.5515 

8.88432 

13.9742 

21.6674 

33.1549 

50.0723 

74.6131 

109.657 

158.911 

2 

3.38928 

5.55162 

8.88623 

13.9871 

21.7228 

33.3319 

50.5323 

75.6351 

111.659 

162.435 

3 

8987..7 

3933199 

79770.9 

189..09 

.190798 

8899149 

31931.0 

07939.. 

11.9003 

1719.87 

2 

3.38928 

5.55166 

8.88723 

13.9973 

21.7843 

33.6009 

51.4735 

78.4343 

119.019 

180.01 

 

 

 

Table 9. The numerical results with different number of iterations for each method. 

   Exact 

      

Picard 

        

Picard-Gauss S. 

       

Picard  with I.F 

       

Picard- G.S.with I.F 

        

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

3 

4.61069 

7.04348 

10.7093 

16.2228 

24.5026 

36.9211 

55.5287 

83.3873 

125.069 

187.399 

3 

4.61069 

7.04348 

10.7093 

16.2228 

24.5026 

36.921 

55.5282 

83.3847 

125.056 

187.347 

3 

4.61069 

7.04348 

10.7093 

16.2228 

24.5025 

36.9206 

55.5255 

83.3696 

124.989 

187.092 

3 

099149. 

0940807 

14904.8 

199...7 

.0934.9 

899..11 

3393.70 

7898708 

1.3949. 

17098.. 

3 

4.61069 

7.04348 

10.7093 

16.2228 

24.5026 

36.9211 

55.5287 

83.3873 

125.069 

187.399 
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Table 10. The numerical results with different number of iterations for each method. 

   Exact 

   

Picard 

      

Picard-Gauss S. 

      

Picard  with I.F 

      

Picard- G.S. with I.F 

      

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

2 

3.38928 

5.55166 

8.88723 

13.9973 

21.7843 

33.6009 

51.4735 

78.4343 

119.019 

180.01 

2 

3.38928 

5.55166 

8.88723 

13.9973 

21.7843 

33.6009 

51.473 

78.4316 

119.007 

179.958 

2 

3.38928 

5.55166 

8.88723 

13.9973 

21.7843 

33.6009 

51.4728 

78.4304 

119. 

179.925 

. 

8987..7 

3933199 

79770.8 

189..08 

.190708 

889944. 

3190083 

0790808 

11.941. 

174941  

2 

3.38928 

5.55166 

8.88723 

13.9973 

21.7843 

33.6009 

51.4735 

78.4343 

119.019 

180.01 

 

Discussion 

The fundamental objective of this work is to find some 

multipliers that can be used to accelerate the 

convergence of the Picard iteration method. We find 

that the ideas of integrating factors can be used to 

collect some terms in a single perfect differential term. 

We used the ideas introduced by Yildiz
10

 to decompose 

the equation, and define integrating factor to the linear 

part of the decomposed equation. Also, we considered 

the Gauss Seidel treatment introduced in, Youssef
3
. 

The goal has been achieved successfully. The new 

modified Picard iteration method is relatively 

straightforward to apply at least with the assistance of a 

powerful computer algebra packages and in simple 

cases it gives exact solutions and in most cases it gives 

a series that converges rapidly to the unique solution. 

The method presented here in addition to its deeply 

mathematical roots is easier straightforward in 

comparison with the other mentioned techniques and it 

gives the same results as in Picard's method and 

Taylor's method with smaller number of iterations as 

shown from the tables.  Moreover, the calculated results 

illustrate that, we obtain the theoretical fixed point, 

there is no change in the values with more iterations. 

The accuracy of the new modified Picard iteration 

method has been confirmed by comparison with the 

exact solution as shown in the tables. 

The convergence of the method has been confirmed by 

comparison with the Picard method, our treatment gives 

the exact solution or at least the solution of the Picard 

iteration modified by the Gauss Seidel
3
. 

In comparison with the power series method, which 

requires the right hand side of the equation to be 

analytic, whereas for using the method of successive 

approximations the analyticity of the right-hand side is 

not obligatory? Therefore, the method of successive 

approximations is generally speaking, more widely 

used: it also used when the expansion of the solution of 

a differential equation in a power series is impossible
3
. 

But this method, unfortunately, has its own 

shortcoming, which consists in that it calls for the 

necessity to compute more and more cumbersome inte- 

 grals. 

This approach is promising and will help in treating 

boundary value problems and other applications in 

partial differential equations. In a next subsequent work 

we will try to use this approach to problems with 

variable coefficients, nonlinear types and also we try to 

find some general forms for the multipliers even for 

standard classes of differential equations. 
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